Skip to main content

Einstein’s “Prague Field Equation” of 1912: Another Perspective

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 157))

Abstract

I reconsider Einstein’s 1912 “Prague-Theory” of static gravity based on a scalar field obeying a non-linear field equation. I point out that this equation follows from the self-consistent implementation of the principle that all forms of energy are the source of the gravitational field according to \(E=mc^2\). This makes it an interesting toy-model for the “flat-space approach” to General Relativity (GR), as pioneered by Kraichnan and later Feynman. Solutions modelling stars show features familiar from GR, e.g., Buchdahl-like inequalities. The relation to full GR is also discussed. This lends this toy theory also some pedagogical significance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In his Prague papers Einstein gradually changed from the first to the second expression.

  2. 2.

    Since here we will be more concerned with the mathematical form and not so much the actual derivation by Einstein, we will ignore the obvious objection that \(c\) has the wrong physical dimension, namely that of a velocity, whereas the proper gravitational potential should have the dimension of a velocity-squared.

  3. 3.

    Einstein considers radiation enclosed in a container whose walls are “massless” (meaning vanishing rest-mass) but can support stresses, so as to be able to counteract radiation pressure. Einstein keeps repeating that equality of both mass types can only be proven if the gravitational field does not act on the stressed walls. That remark is hard to understand in view of the fact that unbalanced stresses add to inertia, as he well knew from his own earlier investigations [8]. However, as explained by Max Laue a year earlier [9], the gravitational action on the stressed walls is just cancelled by that on the stresses of the electromagnetic field, for both systems together form a “complete static system”, as Laue calls it. A year later, in the 1913 “Entwurf” paper with Marcel Grossmann [10], Einstein again used a similar Gedankenexperiment with a massless box containing radiation immersed in a gravitational field, by means of which he allegedly shows that any Poincaré invariant scalar theory of gravity must violate energy conservation. A modern reader must ask how this can possibly be, in view of Noether’s theorem applied to time-translation invariance. A detailed analysis [11] shows that this energy contains indeed the expected contribution from the tension of the walls, which may not be neglected.

  4. 4.

    Anderenfalls würde sich die Gesamtheit der in dem betrachteten Raume befindlichen Massen, die wir auf einem starren, masselosen Gerüste uns befestigt denken wollen, sich in Bewegung zu setzen streben” ([3], p. 452).

  5. 5.

    Pioneered by Robert Kraichnan in his 1947 MIT Bachelor thesis “Quantum Theory of the Linear Gravitational Field”.

  6. 6.

    Its Taylor expansion at \(x=0\) is \(1-6x/5+51x^2/35+\cdots \).

  7. 7.

    This differs by a factor of 2 from (23) which we need and to which we return below.

References

  1. Einstein, A.: Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik 4, 411 (1907). [Erratum, ibid, 5, 98–99 (1908)]

    ADS  Google Scholar 

  2. Einstein, A.: Lichtgeschwindigkeit und Statik des Gravitationsfeldes. Ann. Phys. 343, 355 (1912). doi:10.1002/andp.19123430704

    Article  Google Scholar 

  3. Einstein, A.: Zur Theorie des statischen Gravitationsfeldes. Ann. Phys. 343, 443 (1912). doi:10.1002/andp.19123430709

    Article  Google Scholar 

  4. Einstein, A.: Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Phys. 340, 898 (1911). doi:10.1002/andp.19113401005

    Article  Google Scholar 

  5. Abraham, M.: Zur Theorie der Gravitation. Physikalische Zeitschrift 13, 1 (1912)

    MATH  MathSciNet  Google Scholar 

  6. Abraham, M.: Das Elementargesetz der Gravitation. Physikalische Zeitschrift 13, 4 (1912)

    MATH  Google Scholar 

  7. Einstein, A.: Relativität und Gravitation. Erwiderung auf eine Bemerkung von M. Abraham. Ann. Phys. 343, 1059 (1912). doi:10.1002/andp.19123431014

    Article  Google Scholar 

  8. Einstein, A.: Über die vom Relativitätsprinzip geforderte Trägheit der Energie. Ann. Phys. 328, 371 (1907). doi:10.1002/andp.19073280713

    Article  Google Scholar 

  9. Laue, M.: Zur Dynamik der Relativitätstheorie. Ann. Phys. 340, 524 (1911). doi:10.1002/andp.19113400808

    Article  Google Scholar 

  10. Einstein, A., Grossmann, M.: Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Zeitschrift für Mathematik und Physik 62, 225 (1914)

    MATH  Google Scholar 

  11. Giulini, D.: What is (not) wrong with scalar gravity? Stud. History Philis. Mod. Phys. 39, 154 (2008). doi:10.1016/j.shpsb.2007.09.001

    Article  MATH  MathSciNet  Google Scholar 

  12. Giulini, D.: Consistently implementing the field self-energy in Newtonian gravity. Phys. Lett. A 232, 165 (1997). doi:10.1016/S0375-9601(97)00369-1

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Kraichnan, R.H.: Special-relativistic derivation of generally covariant gravitation. Phys. Rev. 98(4), 1118 (1955). doi:10.1103/PhysRev.98.1118

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Feynman, R.P., Morínigo, F.B., Wagner, W.G., Hatfield, B.: Feynman Lectures on Gravitation. Westview Press, Boulder (2002)

    Google Scholar 

  15. Deser, S.: Self-interaction and gauge invariance. Gen. Rel. Grav. 1, 9 (1970). doi:10.1007/BF00759198

    Article  ADS  MathSciNet  Google Scholar 

  16. Buchdahl, H.A.: General relativistic fluid spheres. Phys. Rev. 116, 1027 (1959). doi:10.1103/PhysRev.116.1027

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford Mathematical Monographs. Oxford University Press, Oxford (2009)

    Google Scholar 

Download references

Acknowledgments

I sincerely thank the organisers and in particular Jiří Bičák for inviting me to the most stimulating and beautiful conference Relativity and Gravitation—100 years after Einstein in Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Giulini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Giulini, D. (2014). Einstein’s “Prague Field Equation” of 1912: Another Perspective. In: Bičák, J., Ledvinka, T. (eds) Relativity and Gravitation. Springer Proceedings in Physics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-06761-2_10

Download citation

Publish with us

Policies and ethics