Skip to main content

Discrete Phase Space

  • Chapter
  • First Online:
Nonequilibrium and Irreversibility

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1553 Accesses

Abstract

Simulations have played a key role in the recent studies on nonequilibrium. And simulations operate on computers to obtain solutions of equations in phase space: therefore phase space points are given a digital representation which might be very precise but rarely goes beyond 32 bits per coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Naive expectation would have been that if the manifold \(\varXi \) and the map \(S\) are smooth, say \(C^\infty \), also \(V^\alpha (x)\) and \(W^\alpha (x)\) depend as smoothly on \(x\).

  2. 2.

    Notice that under the chaotic hypothesis motions on the attracting sets \(\mathcal {\mathcal{A}}\) are Anosov systems so that the stable and unstable manifolds of every point are dense: therefore \(W^s(x)\cap B_\gamma (x)\) is a dense family of layers in \(B_\gamma (x)\), but only one is connected and contains \(x\), if \(\gamma \) is small enough.

  3. 3.

    The exception is associated with points \(x\) which are on the boundaries of the rectangles or on their iterates. In such cases it is possible to assign the symbol \(\xi _0\) arbitrarily among the labels of the rectangles to which \(x\) belongs: once made this choice a compatible history \({{\varvec{\xi }}}\) determining \(x\) exists and is unique.

  4. 4.

    Formally let \(E_i\in \mathcal {\mathcal{P}}\), \(x\in E_i\) and \(\delta (x)=E_i\cap W_u(x)\): then if \(M_{i,j}=1\), i.e. if the interior of \(SE_i\) visits the interior of \(E_j\), it is \(\delta (Sx)\subset S\delta (x)\).

  5. 5.

    The map is not obtainable as a Poincaré’s section of the orbits of a 3-dimensional manifold simply because its Jacobian determinant is not \(+1\).

  6. 6.

    The name is chosen to mark the distinction with respect to the parallelepipeds of the coarse partition.

  7. 7.

    Here it is essential that the chaotic hypothesis holds, i.e. that the system is hyperbolic, otherwise if the system has long time tails the analysis becomes much more involved and so far it can be dealt, even if only qualitatively, on a case by case basis.

  8. 8.

    To get an idea of the orders of magnitude consider a rarefied gas of \(N\) mass \(m\) particles of density \(\varrho \) at temperature \(T\): the metric on phase space will be \(ds^2=\sum _i(\frac{d\mathbf{p}_i^2}{m k_B T}+\frac{d\mathbf{q}_i^2}{\varrho ^{-2/3}})\); each coarse cell will have size at least \(\sim \sqrt{mk_B T}\) in momentum and \(\sim \varrho ^{-\frac{1}{3}}\) in position; this is the minimum precision required to give a meaning to the particles as separate entities. Each microcell could have coordinates represented with \(32\) bits will have size of the order of \(\sqrt{mk_B T}2^{-32}\) in momentum and \(\varrho ^{-\frac{1}{3}}2^{-32}\) in position and the number of theoretically possible phase space points representable in the computer will be \(O((2^{32})^{6N})\) which is obviously far too large to allow anything being close to a recurrence in essentially any simulation of a chaotic system involving more than \(N=1\) particle.

  9. 9.

    With extreme care it is sometimes, and in equilibrium, possible to represent a chaotic evolution \(S\) with a code \(\overline{S}\) which is a true permutation: the only example that I know, dealing with a physically relevant model, is in [14] .

  10. 10.

    However in [1, #42] the \(w\)’s denote integers rather than phase space volumes.

  11. 11.

    Simply because \(q_j\) have finitely many values, \(W\) is fixed and the angle \(\varphi =\varphi (x)\) between stable and unstable manifolds at \(x\) is bounded away fro \(0,\pi \) because of the transversality of the manifolds (in Anosov maps).

  12. 12.

    Informally Pesin’s formula is \(\sum _{q_0,q_1,\ldots ,q_N} e^{-\lambda _u(S^jx)}=O(1)\), see Eq. (3.8.6) and, formally, \(s(\mu _{srb})-\mu _{srb}(\lambda _u)=0\), where \(s(\mu )\) is the Kolmogorov-Sinai entropy, see p. 73, and \(\mu (\lambda )\mathop {=}\limits ^{def}\int \lambda \,d\mu \). Furthermore \(s(\mu )-\mu (\lambda _u)\) is maximal at \(\mu =\mu _{srb}\): “Ruelle’s variational principle”. See p. 60 and [10, Proposition 6.3.4].

  13. 13.

    I would say a strong one.

  14. 14.

    In equilibrium, under the ergodic hypothesis, all microcells are non transient and the SRB distribution coincides with the Liouville distribution.

References

  1. Boltzmann, L.: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respektive den Sätzen über das Wärmegleichgewicht, vol. 2, #42 of Wissenschaftliche Abhandlungen, ed. Hasenöhrl, F. Chelsea, New York, (1968)

    Google Scholar 

  2. Gallavotti, G.: Ergodicity, ensembles, irreversibility in Boltzmann and beyond. J. Stat. Phys. 78, 1571–1589 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Boltzmann, L.: Bemerkungen über einige Probleme der mechanischen Wärmetheorie, vol. 2, #39 of Wissenschaftliche Abhandlungen, ed. Hasenöhrl, F. Chelsea, New York (1877)

    Google Scholar 

  4. Thomson, W.: The kinetic theory of dissipation of energy. Proc. R. Soc. Edinb. 8, 325–328 (1874)

    MATH  Google Scholar 

  5. Boltzmann, L.: Lectures on Gas Theory. English edition annotated by Brush S. University of California Press, Berkeley (1964)

    Google Scholar 

  6. Lebowitz, J.L.: Boltzmann’s entropy and time’s arrow. Phys. Today 46(9), 32–38, (1993)

    Google Scholar 

  7. Garrido, P.L., Goldstein, S., Lebowitz, J.L.: Boltzmann entropy for dense fluids not in local equilibrium. Phys. Rev. Lett. 92, 050602 (+4) (2005)

    Google Scholar 

  8. Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, vol. 1, #22 of Wissenschaftliche Abhandlungen, ed. Hasenöhrl, F. Chelsea, New York (1968)

    Google Scholar 

  9. Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems, vol. 54 of Encyclopedia of Mathematics and Its Applications. Cambriidge University Press, Cambridge (1997)

    Google Scholar 

  10. Gallavotti, G., Bonetto, F., Gentile, G.: Aspects of the Ergodic, Qualitative and Statistical Theory of Motion. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  11. Ruelle, D.: Elements of Differentiable Dynamics and Bifurcation Theory. Academic Press, New York (1989)

    MATH  Google Scholar 

  12. Sinai, Y.G.: Markov partitions and \(C\)-diffeomorphisms. Funct. Anal. Appl. 2(1), 64–89 (1968)

    Google Scholar 

  13. Bowen, R.: Markov partitions for axiom A diffeomorphisms. Am. J. Math. 92, 725–747 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  14. Levesque, D., Verlet, L.: Molecular dynamics and time reversibility. J. Stat. Phys. 72, 519–537 (1993)

    Article  MATH  ADS  Google Scholar 

  15. Gallavotti, G.: New methods in nonequilibrium gases and fluids. Open Syst. Inf. Dyn. 6, 101–136 (1999) (preprint chao-dyn/9610018)

    Google Scholar 

  16. Gallavotti, G.: Counting phase space cells in statistical mechanics. Commun. Math. Phys. 224, 107–112 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Gallavotti, G.: Entropy production in nonequilibrium stationary states: a point of view. Chaos 14, 680–690 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Gallavotti, G.: Heat and fluctuations from order to chaos. Eur. Phys. J. B 61, 1–24 (2008)

    Article  ADS  Google Scholar 

  19. Ruelle, D.: Statistical mechanics of one-dimensional lattice gas. Commun. Math. Phys. 9, 267–278 (1968)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Jiang, M., Pesin, Y.B.: Equilibrium measures for coupled map lattices: existence, uniqueness and finite-dimensional approximations. Commun. Math. Phys. 193, 675–711 (1998)

    Google Scholar 

  21. Gallavotti, G.: Statistical Mechanics. A Short Treatise. Springer, Berlin (2000)

    Google Scholar 

  22. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeormorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)

    Google Scholar 

  23. Einstein, E.: Zur Theorie des Radiometers. Annalen der Physik 69, 241–254 (1922)

    Google Scholar 

  24. Andrej, L.: The rate of entropy change in non-Hamiltonian systems. Phys. Lett. 111A, 45–46 (1982)

    ADS  Google Scholar 

  25. Ruelle, D.: Smooth dynamics and new theoretical ideas in non-equilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Gallavotti .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gallavotti, G. (2014). Discrete Phase Space. In: Nonequilibrium and Irreversibility. Theoretical and Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06758-2_3

Download citation

Publish with us

Policies and ethics