Proteasome Inhibitors Versus E3 Ligase Inhibitors for Cancer Therapy

  • Michael R. Mattern
  • Michael J. Eddins
  • Saket Agarwal
  • David E. Sterner
  • Matthew P. Kodrasov
  • K. G. Suresh Kumar
  • Jian Wu
  • Benjamin Nicholson
Part of the Resistance to Targeted Anti-Cancer Therapeutics book series (RTACT)


Molecular oncology has the potential to revolutionize cancer treatment owing to its focus on discrete, cancer-selective targets, as evident in the recent success of kinase inhibitors and antibody-based therapies. Because of the heterogeneous nature of cancer, however, not every tumor type can be addressed with an appropriately selective therapy and some respond best to drug combinations that include classical “toxic” agents. The ubiquitin-proteasome pathway, recently harnessed for cancer treatment with the clinical use of “toxic” proteasome inhibitors bortezomib and carfilzomib, affords targets that intuitively are highly selective, exemplified by inhibitors of E3 ligases, the ubiquitin-conjugating enzymes, as well as those that are intuitively nonselective, exemplified by the proteasomal proteases. In the last two decades, anticancer drug development based on these two target classes has proceeded in parallel, with the early results suggesting that the nonselective proteasome is the better target. Lately, however, it has become clear that (1) the “nonselective” proteasome target may be addressed in selective ways and (2) a clearer understanding of the E3 ligase reaction can lead to the design or discovery of efficacious inhibitors. Evidence supporting these notions and implications for cancer treatment going forward will be discussed.


Proteasome inhibitor E3 ligase Drug resistance Clinical trial Binding pocket Cancer pharmacology 



Absorption distribution, metabolism, excretion


Deubiquitylating enzyme


Endoplasmic reticulum-associated degradation


Human variant of MDM2 = murine double minute 2 homologue (an E3 ligase)


Inhibitor of apoptosis


Really interesting new gene


Ubiquitin-specific protease


  1. 1.
    Adams J (2002) Development of the proteasome inhibitor PS-341. Oncologist 7(1):9–16PubMedGoogle Scholar
  2. 2.
    McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 11(4–5):164–179PubMedGoogle Scholar
  3. 3.
    Anderson KC (2013) Therapeutic advances in relapsed or refractory multiple myeloma. J Natl Compr Canc Netw 11(5 suppl):676–679PubMedGoogle Scholar
  4. 4.
    Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5(5):417–421PubMedGoogle Scholar
  5. 5.
    Lopez-Girona A et al (2012) Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26(11):2326–2335PubMedPubMedCentralGoogle Scholar
  6. 6.
    Pellom ST Jr, Shanker A (2012) Development of proteasome inhibitors as therapeutic drugs. J Clin Cell Immunol S5:5PubMedGoogle Scholar
  7. 7.
    Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedGoogle Scholar
  8. 8.
    Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6(1):79–87PubMedGoogle Scholar
  9. 9.
    Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10(2):104–115PubMedGoogle Scholar
  10. 10.
    Miller Z et al (2013) Inhibitors of the immunoproteasome: current status and future directions. Curr Pharm Des 19(22):4140–4151PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wehenkel M et al (2012) A selective inhibitor of the immunoproteasome subunit LMP2 induces apoptosis in PC-3 cells and suppresses tumour growth in nude mice. Br J Cancer 107(1):53–62PubMedPubMedCentralGoogle Scholar
  12. 12.
    Kloetzel PM (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2(3):179–187PubMedGoogle Scholar
  13. 13.
    Suzuki E et al (2011) Molecular mechanisms of bortezomib resistant adenocarcinoma cells. PLoS One 6(12):e27996PubMedPubMedCentralGoogle Scholar
  14. 14.
    Groettrup M, Kirk CJ, Basler M (2010) Proteasomes in immune cells: more than peptide producers? Nat Rev Immunol 10(1):73–78PubMedGoogle Scholar
  15. 15.
    Teicher BA et al (1999) The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 5(9):2638–2645PubMedGoogle Scholar
  16. 16.
    Orlowski RZ et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20(22):4420–4427PubMedGoogle Scholar
  17. 17.
    Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14(6):1649–1657PubMedGoogle Scholar
  18. 18.
    Molineaux SM (2012) Molecular pathways: targeting proteasomal protein degradation in cancer. Clin Cancer Res 18(1):15–20PubMedGoogle Scholar
  19. 19.
    Ruschak AM et al (2011) Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 103(13):1007–1017PubMedGoogle Scholar
  20. 20.
    Frezza M, Schmitt S, Dou QP (2011) Targeting the ubiquitin-proteasome pathway: an emerging concept in cancer therapy. Curr Top Med Chem 11(23):2888–2905PubMedGoogle Scholar
  21. 21.
    Palombella VJ et al (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5):773–785PubMedGoogle Scholar
  22. 22.
    Hideshima T et al (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61(7):3071–3076PubMedGoogle Scholar
  23. 23.
    Shanker A et al (2008) Treating metastatic solid tumors with bortezomib and a tumor necrosis factor-related apoptosis-inducing ligand receptor agonist antibody. J Natl Cancer Inst 100(9):649–662PubMedPubMedCentralGoogle Scholar
  24. 24.
    Lesinski GB et al (2008) IFN-alpha and bortezomib overcome Bcl-2 and Mcl-1 overexpression in melanoma cells by stimulating the extrinsic pathway of apoptosis. Cancer Res 68(20):8351–8360PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ling YH et al (2002) PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. Mol Cancer Ther 1(10):841–849PubMedGoogle Scholar
  26. 26.
    Landowski TH et al (2005) Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65(9):3828–3836PubMedGoogle Scholar
  27. 27.
    Wang F et al (2011) A novel dithiocarbamate analogue with potentially decreased ALDH inhibition has copper-dependent proteasome-inhibitory and apoptosis-inducing activity in human breast cancer cells. Cancer Lett 300(1):87–95PubMedPubMedCentralGoogle Scholar
  28. 28.
    Ding WX et al (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171(2):513–524PubMedPubMedCentralGoogle Scholar
  29. 29.
    Chastagner P, Israel A, Brou C (2008) AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS One 3(7):e2735PubMedPubMedCentralGoogle Scholar
  30. 30.
    Tan JM et al (2008) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 17(3):431–439PubMedGoogle Scholar
  31. 31.
    Wong E, Cuervo AM (2010) Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2(12):a006734PubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhu K, Dunner K Jr, McConkey DJ (2010) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29(3):451–462PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110(10):1389–1398PubMedPubMedCentralGoogle Scholar
  34. 34.
    Travers KJ et al (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249–258PubMedGoogle Scholar
  35. 35.
    Lu S, Wang J (2013) The resistance mechanisms of proteasome inhibitor bortezomib. Biomark Res 1(13):1–9Google Scholar
  36. 36.
    Lu S et al (2008) Point mutation of the proteasome beta5 subunit gene is an important mechanism of bortezomib resistance in bortezomib-selected variants of Jurkat T cell lymphoblastic lymphoma/leukemia line. J Pharmacol Exp Ther 326(2):423–431PubMedGoogle Scholar
  37. 37.
    Oerlemans R et al (2008) Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112(6):2489–2499PubMedGoogle Scholar
  38. 38.
    Letai A et al (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3):183–192PubMedGoogle Scholar
  39. 39.
    Xiao C et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9(4):405–414PubMedPubMedCentralGoogle Scholar
  40. 40.
    Chauhan D et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8(5):407–419PubMedGoogle Scholar
  41. 41.
    Wang HH et al (2011) Reversion of multidrug-resistance by proteasome inhibitor bortezomib in K562/DNR cell line. Chin J Cancer Res 23(1):69–73PubMedPubMedCentralGoogle Scholar
  42. 42.
    O’Connor R et al (2013) The interaction of bortezomib with multidrug transporters: implications for therapeutic applications in advanced multiple myeloma and other neoplasias. Cancer Chemother Pharmacol 71(5):1357–1368PubMedGoogle Scholar
  43. 43.
    de Wilt LH et al (2012) Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer. Biochem Pharmacol 83(2):207–217PubMedGoogle Scholar
  44. 44.
    Shringarpure R et al (2006) Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol 134(2):145–156PubMedGoogle Scholar
  45. 45.
    Lu S et al (2008) Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Exp Hematol 36(10):1278–1284PubMedGoogle Scholar
  46. 46.
    Buda G et al (2010) Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin. Ann Hematol 89(11):1133–1140PubMedPubMedCentralGoogle Scholar
  47. 47.
    Kuhn DJ et al (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110(9):3281–3290PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kupperman E et al (2010) Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res 70(5):1970–1980PubMedGoogle Scholar
  49. 49.
    Piva R et al (2008) CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood 111(5):2765–2775PubMedGoogle Scholar
  50. 50.
    Demo SD et al (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67(13):6383–6391PubMedGoogle Scholar
  51. 51.
    Chauhan D et al (2010) A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood 116(23):4906–4915PubMedPubMedCentralGoogle Scholar
  52. 52.
    Daniel KG et al (2005) Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res 7(6):R897–R908PubMedPubMedCentralGoogle Scholar
  53. 53.
    Schimmer AD et al (2012) A phase I study of the metal ionophore clioquinol in patients with advanced hematologic malignancies. Clin Lymphoma Myeloma Leuk 12(5):330–336PubMedGoogle Scholar
  54. 54.
    Voorhees PM, Orlowski RZ (2006) The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 46:189–213PubMedGoogle Scholar
  55. 55.
    Kuhn DJ et al (2009) Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113(19):4667–4676PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kisselev AF et al (2003) The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J Biol Chem 278(38):35869–35877PubMedGoogle Scholar
  57. 57.
    van Swieten PF et al (2007) A cell-permeable inhibitor and activity-based probe for the caspase-like activity of the proteasome. Bioorg Med Chem Lett 17(12):3402–3405PubMedGoogle Scholar
  58. 58.
    Mirabella AC, Pletnev AA, Downey SL, Florea BI, Shabaneh TB, Britton M, Verdoes M, Filippov DV, Overkleeft HS, Kisselev AF (2011) Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib. Chem Biol 18(5):608–618PubMedPubMedCentralGoogle Scholar
  59. 59.
    Sprangers R et al (2008) TROSY-based NMR evidence for a novel class of 20S proteasome inhibitors. Biochemistry 47(26):6727–6734PubMedGoogle Scholar
  60. 60.
    D’Arcy P et al (2011) Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 17(12):1636–1640PubMedGoogle Scholar
  61. 61.
    Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2(3):169–178PubMedGoogle Scholar
  62. 62.
    Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533PubMedGoogle Scholar
  63. 63.
    Herman-Bachinsky Y et al (2007) Regulation of the Drosophila ubiquitin ligase DIAP1 is mediated via several distinct ubiquitin system pathways. Cell Death Differ 14(4):861–871PubMedGoogle Scholar
  64. 64.
    Garber K (2005) Missing the target: ubiquitin ligase drugs stall. J Natl Cancer Inst 97(3):166–167PubMedGoogle Scholar
  65. 65.
    Buchwald M et al (2010) Ubiquitin conjugase UBCH8 targets active FMS-like tyrosine kinase 3 for proteasomal degradation. Leukemia 24(8):1412–1421PubMedGoogle Scholar
  66. 66.
    Rajbhandari P et al (2013) Pin1 modulates ERalpha levels in breast cancer through inhibition of phosphorylation-dependent ubiquitination and degradation. Oncogene 33:1438–1447PubMedPubMedCentralGoogle Scholar
  67. 67.
    Regnstrom K et al (2013) Label free fragment screening using surface plasmon resonance as a tool for fragment finding—analyzing parkin, a difficult CNS target. PLoS One 8(7):e66879PubMedPubMedCentralGoogle Scholar
  68. 68.
    Salemme FR (2004) High-throughput biochemistry heats up. Nat Biotechnol 22(9):1100–1101PubMedGoogle Scholar
  69. 69.
    Vassilev LT (2004) Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3(4):419–421PubMedGoogle Scholar
  70. 70.
    Pantoliano MW et al (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6(6):429–440PubMedGoogle Scholar
  71. 71.
    Grasberger BL et al (2005) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 48(4):909–912PubMedGoogle Scholar
  72. 72.
    Zelcer N et al (2009) LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 325(5936):100–104PubMedPubMedCentralGoogle Scholar
  73. 73.
    Eddins M (2013) Promising cardiovascular intervention by ubiquitin ligases: LDL-cholesterol regulation by IDOL. In: Ubiquitin drug discovery & diagnostics conference 2013. Conference presentation abstracts, p 29Google Scholar
  74. 74.
    Razinkov VI, Treuheit MJ, Becker GW (2013) Methods of high throughput biophysical characterization in biopharmaceutical development. Curr Drug Discov Technol 10(1):59–70PubMedGoogle Scholar
  75. 75.
    Page RC et al (2012) Structural insights into the conformation and oligomerization of E2~ubiquitin conjugates. Biochemistry 51(20):4175–4187PubMedPubMedCentralGoogle Scholar
  76. 76.
    Katoh S et al (2005) Active site residues and amino acid specificity of the ubiquitin carrier protein-binding RING-H2 finger domain. J Biol Chem 280(49):41015–41024PubMedGoogle Scholar
  77. 77.
    Zhao Y et al (2013) Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. J Am Chem Soc 135(19):7223–7234PubMedPubMedCentralGoogle Scholar
  78. 78.
    Buckley DL et al (2012) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction. J Am Chem Soc 134(10):4465–4468PubMedPubMedCentralGoogle Scholar
  79. 79.
    Vassilev LT et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848PubMedGoogle Scholar
  80. 80.
    Ciechanover A, Orian A, Schwartz AL (2000) The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J Cell Biochem 77(S34):40–51Google Scholar
  81. 81.
    Chen JJ, Tsu CA, Gavin JA, Milhollen MA, Bruzzese FJ, Mallender WD, Sintchak MD, Bump NJ, Yang X, Ma J, Loke H-K, Xu Q, Li P, Bence NF, Brownell JE, Dick LR (2011) Mechanistic studies of substrate-assisted inhibition of ubiquitin-activating enzyme by adenosine sulfamate analogues. J Biol Chem 286(47):40867–40877PubMedPubMedCentralGoogle Scholar
  82. 82.
    Chen Q et al (2008) Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 111(9):4690–4699PubMedPubMedCentralGoogle Scholar
  83. 83.
    Milhollen MA et al (2012) Treatment-emergent mutations in NAEbeta confer resistance to the NEDD8-activating enzyme inhibitor MLN4924. Cancer Cell 21(3):388–401PubMedGoogle Scholar
  84. 84.
    Yang Y, Kitagati J, Dai R-M, Tsai YC, Lorick KL, Ludwig RL, Pierre SA, Jensen JP, Davydov IV, Oberoi P, Li C-CH, Kenten JH, Beutler JA, Vousden KH, Weissman AM (2007) Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res 67(19):9472–9481PubMedGoogle Scholar
  85. 85.
    Ceccarelli DF et al (2011) An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145(7):1075–1087PubMedGoogle Scholar
  86. 86.
    Boddy MN, Freemont PS, Borden KL (1994) The p53-associated protein MDM2 contains a newly characterized zinc-binding domain called the RING finger. Trends Biochem Sci 19(5):198–199PubMedGoogle Scholar
  87. 87.
    Fakharzadeh SS, Trusko SP, George DL (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10(6):1565–1569PubMedPubMedCentralGoogle Scholar
  88. 88.
    Suzuki K, Matsubara H (2011) Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011:978312PubMedPubMedCentralGoogle Scholar
  89. 89.
    Yuan Y et al (2011) Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP. J Hematol Oncol 4:16PubMedPubMedCentralGoogle Scholar
  90. 90.
    Issaeva N et al (2004) Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10(12):1321–1328PubMedGoogle Scholar
  91. 91.
    Patel S, Player MR (2008) Small-molecule inhibitors of the p53-HDM2 interaction for the treatment of cancer. Expert Opin Investig Drugs 17(12):1865–1882PubMedGoogle Scholar
  92. 92.
    Zhao Y, Bernard D, Wang S (2013) Small molecule inhibitors of MDM2-p53 and MDMX-p53 interactions as new cancer therapeutics. Biodiscovery 8(4):1–15Google Scholar
  93. 93.
    Secchiero P et al (2011) Recent advances in the therapeutic perspectives of Nutlin-3. Curr Pharm Des 17(6):569–577PubMedGoogle Scholar
  94. 94.
    Wei SJ et al (2013) In vitro selection of mutant HDM2 resistant to Nutlin inhibition. PLoS One 8(4):e62564PubMedPubMedCentralGoogle Scholar
  95. 95.
    Vatsyayan R et al (2013) Nutlin-3 enhances sorafenib efficacy in renal cell carcinoma. Mol Carcinog 52(1):39–48PubMedPubMedCentralGoogle Scholar
  96. 96.
    Smith MA et al (2012) Initial testing of JNJ-26854165 (Serdemetan) by the pediatric preclinical testing program. Pediatr Blood Cancer 59(2):329–332PubMedGoogle Scholar
  97. 97.
    Kojima K et al (2010) The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther 9(9):2545–2557PubMedPubMedCentralGoogle Scholar
  98. 98.
    Tabernero J et al (2011) A phase I first-in-human pharmacokinetic and pharmacodynamic study of serdemetan in patients with advanced solid tumors. Clin Cancer Res 17(19):6313–6321PubMedGoogle Scholar
  99. 99.
    Biderman L, Manley JL, Prives C (2012) Mdm2 and MdmX as regulators of gene expression. Genes Cancer 3(3–4):264–273PubMedPubMedCentralGoogle Scholar
  100. 100.
    Zhao Y et al (2013) A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J Med Chem 56:5553–5561PubMedGoogle Scholar
  101. 101.
    Buckley DL et al (2012) Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1alpha. Angew Chem Int Ed Engl 51(46):11463–11467PubMedPubMedCentralGoogle Scholar
  102. 102.
    Flygare JA et al (2012) Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J Med Chem 55(9):4101–4113PubMedPubMedCentralGoogle Scholar
  103. 103.
    Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143:686–693PubMedGoogle Scholar
  104. 104.
    Weisberg E et al (2010) Smac mimetics: implications for enhancement of targeted therapies in leukemia. Leukemia 24(12):2100–2109PubMedPubMedCentralGoogle Scholar
  105. 105.
    Cai Q et al (2011) A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem 54(8):2714–2726PubMedPubMedCentralGoogle Scholar
  106. 106.
    McManus DC et al (2004) Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23(49):8105–8117PubMedGoogle Scholar
  107. 107.
    Allensworth JL et al (2013) Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-alpha-independent mechanism. Breast Cancer Res Treat 137(2):359–371PubMedGoogle Scholar
  108. 108.
    de Almagro MC, Vucic D (2012) The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol 34(3):200–211PubMedGoogle Scholar
  109. 109.
    Bodine SC et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708PubMedGoogle Scholar
  110. 110.
    Maxwell PH et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275PubMedGoogle Scholar
  111. 111.
    Deng L et al (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2):351–361PubMedGoogle Scholar
  112. 112.
    Carrano AC et al (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1(4):193–199PubMedGoogle Scholar
  113. 113.
    Winston JT et al (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13(3):270–283PubMedPubMedCentralGoogle Scholar
  114. 114.
    Vidal M (2009) Role of polycomb proteins Ring1A and Ring1B in the epigenetic regulation of gene expression. Int J Dev Biol 53(2–3):355–370PubMedGoogle Scholar
  115. 115.
    Paolino M et al (2011) Essential role of E3 ubiquitin ligase activity in Cbl-b-regulated T cell functions. J Immunol 186(4):2138–2147PubMedGoogle Scholar
  116. 116.
    Nakahara T et al (2007) YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res 67(17):8014–8021PubMedGoogle Scholar
  117. 117.
    Yamasaki S et al (2007) Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin’. EMBO J 26(1):113–122PubMedPubMedCentralGoogle Scholar
  118. 118.
    Scheffner M et al (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75(3):495–505PubMedGoogle Scholar
  119. 119.
    Shi D, Grossman SR (2010) Ubiquitin becomes ubiquitous in cancer: emerging roles of ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets. Cancer Biol Ther 10(8):737–747PubMedPubMedCentralGoogle Scholar
  120. 120.
    Chan CH et al (2013) Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154(3):556–568PubMedGoogle Scholar
  121. 121.
    Ito T et al (2010) Identification of a primary target of thalidomide teratogenicity. Science 327(5971):1345–1350PubMedGoogle Scholar
  122. 122.
    Goldenberg SJ et al (2010) Strategies for the identification of ubiquitin ligase inhibitors. Biochem Soc Trans 38(pt 1):132–136PubMedPubMedCentralGoogle Scholar
  123. 123.
    Davydov IV et al (2004) Assay for ubiquitin ligase activity: high-throughput screen for inhibitors of HDM2. J Biomol Screen 9(8):695–703PubMedGoogle Scholar
  124. 124.
    Huang KS, Vassilev LT (2005) High-throughput screening for inhibitors of the Cks1-Skp2 interaction. Methods Enzymol 399:717–728PubMedGoogle Scholar
  125. 125.
    Ungermannova D et al (2013) High-throughput screening AlphaScreen assay for identification of small-molecule inhibitors of ubiquitin E3 ligase SCFSkp2-Cks1. J Biomol Screen 18(8):910–920PubMedGoogle Scholar
  126. 126.
    Dy GK et al (2013) Phase Ib trial of the oral angiogenesis inhibitor pazopanib administered concurrently with erlotinib. Invest New Drugs 31(4):891–899PubMedGoogle Scholar
  127. 127.
    Britten CD (2013) PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother Pharmacol 71(6):1395–1409PubMedGoogle Scholar
  128. 128.
    Sheppard KE et al (2013) Synergistic inhibition of ovarian cancer cell growth by combining selective PI3K/mTOR and RAS/ERK pathway inhibitors. Eur J Cancer 49:3936–3944PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael R. Mattern
    • 1
  • Michael J. Eddins
    • 1
  • Saket Agarwal
    • 1
  • David E. Sterner
    • 1
  • Matthew P. Kodrasov
    • 1
  • K. G. Suresh Kumar
    • 1
  • Jian Wu
    • 1
  • Benjamin Nicholson
    • 1
  1. 1.Progenra, Inc.MalvernUSA

Personalised recommendations