Skip to main content

Environmental Fate and Toxicology of Chlorothalonil

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 232

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 232))

Abstract

The fungicide chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile; CAS 1897-45-6; Fig. 1) was introduced in 1965 by Diamond Shamrock Corp. and was first registered in 1966 for use on turfgrass within the United States. An additional registration was granted 4 years later for use on potatoes, marking it the first approved food crop for application (US EPA 1999). It is formulated as concentrates, powders, and granules, among other registered formulations. Some of the prominent products containing chlorothalonil as the active ingredient include Bravo®, Daconil® and Sweep® (US EPA 1999). These or other chlorothalonil formulations have been applied to crops such as celery, beans, peanuts, and peaches, among others. Within the USA, approximately 34% of the total chlorothalonil applied is used on peanuts, 12% on potatoes and 10% on golf courses (US EPA 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Armbrust K (2001) Chlorothalonil and chlorpyrifos degradation products in golf course leachate. Pest Manag Sci 57:797–802

    Article  CAS  Google Scholar 

  • Bedos C, Rousseau-Djabri MF, Loubet B, Durand B, Flura D, Briand O, Barriuso E (2010) Fungicide volatilization measurements: inverse modeling, role of vapor pressure, and state of foliar residue. Environ Sci Technol 44:2522–2528

    Google Scholar 

  • Bringolf RB, Cope WG, Eads CB, Lazaro PR (2007) Acute and chronic toxicity of technical-grade pesticides to glochidia and juveniles of freshwater mussels (unionidae). Environ Toxicol Chem 26(10):2086–2093

    Article  CAS  Google Scholar 

  • CDPR, California department of Pesticide Regulation (2005) Chlorothalonil: risk characterization document for dietary exposure. http://www.cdpr.ca.gov/docs/risk/rcd/chlorothalonil.pdf

  • Caux PY, Kent RA, Fan GT, Stephenson GL (1996) Environmental fate and effects of chlorothalonil: a Canadian perspective. Crit Rev Environ Sci Tech 26(1):45–93

    Article  CAS  Google Scholar 

  • Chen SK, Edwards CA, Subler S (2001) Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biol Biochem 33:1971–1980

    Article  CAS  Google Scholar 

  • Carlo-Rojas Z, Bello-Mendoza R, Figueroa MS, Sokolov MY (2004) Chlorothalonil degradation under anaerobic conditions in an agricultural tropical soil. Water Air Soil Pollut 151:397–409

    Article  CAS  Google Scholar 

  • Davies PE, White RWG (1985) The toxicology and metabolism of chlorothalonil in fish. I. Lethal levels for Salmo gairdneri, Galaxias maculatus, G. truttaceus and G. auratus and the fate of 14C-TCIN in S. gairdneri. Aquat Toxicol 7:93–105

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Wallace SC, Danese LE, Baird TD (2009) Temperature and salinity effects on the toxicity of common pesticides to the grass shrimp, Palaemonetes pugio. J Environ Sci Health B 44:455–460

    Article  CAS  Google Scholar 

  • Ernst W, Doe K, Jonah P, Young J, Julien G, Hennigar P (1991) The toxicity of chlorothalonil to aquatic fauna and the impact of its operational use on a pond ecosystem. Arch Environ Contam Toxicol 21:1–9

    Article  CAS  Google Scholar 

  • Farag AT, Abdel-Zaher Karkour T, El Okazy A (2006) Embryotoxicity of oral administered chlorothalonil in mice. Birth Defect Res B 77:104–109

    Article  CAS  Google Scholar 

  • Fungicide Resistance Action Committee (2013) FRAC code list 2013: fungicides sorted by mode of action

    Google Scholar 

  • Fushiwaki Y, Urano K (2001) Adsorption of pesticides and their biodegradation products on clay minerals and soils. J Health Sci 47(4):429–432

    Article  CAS  Google Scholar 

  • Gallagher EP, Canada AT, Di Giulio RT (1992) The protective role of glutathione in chlorothalonil-induced toxicity to channel catfish. Aquat Toxicol 23:155–168

    Article  CAS  Google Scholar 

  • Gamble DS, Bruccoleri AG, Lindsay E, Langford AH (2000) Chlorothalonil in a quartz sand soil: speciation and kinetics. Environ Sci Technol 34:120–124

    Article  CAS  Google Scholar 

  • Habte M, Aziz T, Yuen JE (1992) Residual toxicity of soil-applied chlorothalonil on mycorrhizal symbiosis in Leucaena leucocephala. Plant Soil 140:263–268

    Article  CAS  Google Scholar 

  • Haith DA, Rossi FS (2003) Risk assessment of pesticide runoff from turf. J Environ Qual 32:447–455

    Article  CAS  Google Scholar 

  • Kwon JW, Armbrust KL (2006) Degradation of chlorothalonil in irradiated water/sediment systems. J Agric Food Chem 54:3651–3657

    Article  CAS  Google Scholar 

  • Latteur G, Jansen JP (2002) Effects of 20 fungicides on the infectivity of conidia of the aphid entomopathogenic fungus Erynia neoaphidis. BioControl 47:435–444

    Article  CAS  Google Scholar 

  • Leistra M, Van Den Berg F (2007) Volatilization of parathion and chlorothalonil from a potato crop simulated by the PEARL model. Environ Sci Technol 41:2243–2248

    Article  CAS  Google Scholar 

  • Liang B, Li R, Jiang D, Sun J, Qiu J, Zhao Y, Li S, Jiang J (2010) Hydrolytic dechlorination of chlorothalonil by Ochrobactrum sp. CTN-11 isolated from a chlorothalonil-contaminated soil. Curr Microbiol 61:226–233

    Article  CAS  Google Scholar 

  • Monadjemi S, El Roz M, Richard C, Ter Halle A (2011) Photoreduction of chlorothalonil fungicide on plant leaf models. Environ Sci Technol 45:9582–9589

    Article  CAS  Google Scholar 

  • Mori T, Fujie K, Kuwatsuka S, Katayama A (1996) Accelerated microbial degradation of chlorothalonil in soils amended with farmyard manure. Soil Sci Plant Nutr 42(2):315–322

    CAS  Google Scholar 

  • Motonaga K, Takagi K, Matumoto S (1996) Biodegradation of chlorothalonil in soil after suppression of degradation. Biol Fertil Soils 23:340–345

    Article  CAS  Google Scholar 

  • Mozzachio AM, Rusiecki JA, Hoppin JA, Mahajan R, Patel R, Beane-Freeman L, Alavanja MCR (2008) Chlorothalonil exposure and cancer incidence among pesticide applicator participants in the agricultural health study. Environ Res 108:400–403

    Article  CAS  Google Scholar 

  • Mueller DS, Jeffers SN, Buck JW (2005) Toxicity of fungicides to urediniospores of six rust fungi that occur on ornamental crops. Plant Dis 89:255–261

    Article  CAS  Google Scholar 

  • Park J-W, Lee S-E, Rhee I-K, Kim J-E (2002) Transformation of the fungicide chlorothalonil by fenton reagent. J Agric Food Chem 50:7570–7575

    Article  CAS  Google Scholar 

  • Patakioutas G, Albanis TA (2002) Adsorption-desorption studies of alachlor, metolachlor, EPTC, chlorothalonil and pirimiphos-methyl in contrasting soils. Pest Manag Sci 58:352–362

    Article  CAS  Google Scholar 

  • Penuela GA, Barcelo D (1998) Photodegradation and stability of chlorothalonil in water studied by soild-phase disk extraction followed by gas chromatographic techniques. J Chromatogr A 823:81–90

    Article  CAS  Google Scholar 

  • Potter TL, Wauchope RD, Culbreath AK (2001) Accumulation and decay of chlorothalonil and selected metabolites in surface soil following foliar application to peanuts. Environ Sci Technol 35:2634–2639

    Article  CAS  Google Scholar 

  • Putnam RA, Nelson JO, Clark JM (2003) The persistence and degradation of chlorothaonil and chlorpyrifos in a cranberry bog. J Agric Food Chem 51:170–176

    Article  CAS  Google Scholar 

  • Sakkas VA, Lambropoulou DA, Albanis TA (2002) Study of chlorothalonil photodegradation in natural waters and in the presence of humic substances. Chemosphere 48(9):939–945

    Article  CAS  Google Scholar 

  • Sapozhnikova Y, Wirth E, Schiff K, Brown J, Fulton M (2007) Antifouling pesticides in the coastal waters of Southern California. Mar Pollut Bull 54:1972–1978

    Article  CAS  Google Scholar 

  • Sato K, Tanaka H (1987) Degradation and metabolism of a fungicide, 2,4,5,6-tetre-chloroisophthalonitrile (TPN) in soil. Biol Fertil Soils 3:205–209

    Article  CAS  Google Scholar 

  • Sherrard RM, Murray-Gulde CL, Rodgers JH, Shah YT (2003) Comparative toxicity of chlorothalonil: Ceriodaphnia dubia and Pimephales promelas. Ecotoxicol Environ Saf 56:327–333

    Article  CAS  Google Scholar 

  • Szalkowski MB, Stallard DE (1977) Effect of pH on the hydrolysis of chlorothalonil. J Agric Food Chem 25(1):208–210

    Article  CAS  Google Scholar 

  • Tillman RW, Siegel MR, Long JW (1973) Mechanism of action and fate of the fungicide chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile) in biological systems. I. Reactions with cells and subcellular components of Saccharomyces pastorianus. Pest Biochem Physiol 3:160–167

    Article  CAS  Google Scholar 

  • Tomlin CDS (2000) The pesticide manual, 12th edn. The British Crop Protection Council, Surrey, UK, pp 620–621

    Google Scholar 

  • Ukai T, Itou T, Katayama A (2003) Degradation of chlorothalonil in soils treated repeatedly with chlorothalonil. J Pest Sci 28:208–211

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency. Office of Pesticide Programs. Special Review and Reregistration Division., Reregistration eligibility decision: chlorothalonil (1999) US Environmental Protection Agency Office of Pesticide Programs Special Review and Reregistration Division: Washington, D.C.

    Google Scholar 

  • United States Environmental Protection Agency (2007) Office of Pesticide Programs. Potential risks of labeled chlorothalonil uses to the federally listed California red legged frog. 2007, US Environmental Protection Agency Office of Pesticide Programs Environmental Fate and Effects Division: Washington, D.C.

    Google Scholar 

  • USGS National Water Quality Assessment Data Warehouse http://web1.er.usgs.gov/NAWQAMapTheme/index.jsp

  • van der Pas LJT, Matser AM, Boesten JJTI, Leistra M (1999) Behaviour of metamitron and hydroxychlorothalonil in low-humic sandy soils. Pest Sci 55:923–934

    Google Scholar 

  • Vincent PG, Sisler HD (1968) Mechanism of antifungal action of 2,4,5,6-tetrachloroisophthalonitrile. Physiol Plant 21:1249–1264

    Article  CAS  Google Scholar 

  • Wallace DF, Hand LH, Oliver RG (2010) The role of indirect photolysis in limiting the persistence of crop protection products in surface waters. Environ Toxicol Chem 29(3):575–581

    Article  CAS  Google Scholar 

  • Waltz C, Armbrust K, Landry G (2002) Chlorpyrifos and chlorothalonil in golf course leachate. http://www2.gcsaa.org/gcm/2002/sept02/pdfs/09chlorpyrifos.pdf

  • Wan MT, Rahe JE, Watts RG (1998) A new technique for determining the sublethal toxicity of pesticides to the vesicular-arbuscular mycorrhizal fungus Glomus Intraradices. Environ Toxicol Chem 17(7):1421–1428

    CAS  Google Scholar 

  • Wang H, Xu S, Hu J, Wang X (2009) Effect of potassium dihydrogen phosphate and bovine manure compost on the degradation of chlorothalonil in soil. Soil Sediment Contam 18:195–204

    Article  Google Scholar 

  • Wang H, Wang C, Chen F, Wang X (2011) Anaerobic degradation of chlorothalonil in four paddy soils. Ecotoxicol Environ Saf 74:1000–1005

    Article  CAS  Google Scholar 

  • World Health Organization (1996) International Programme on Chemical Safety. Chlorothalonil. Environmental Health Criteria 183. Geneva, Switzerland. http://www.inchem.org/documents/ehc/ehc/ehc183.htm#SubSectionNumber:9.1.3

  • Wu L, Liu G, Yates MV, Green RL, Pacheco P, Gan J, Yates SR (2002) Environmental fate of metalaxyl and chlorothalonil applied to a bentgrass putting green under southern California climatic conditions. Pest Manag Sci 58:335–342

    Article  CAS  Google Scholar 

  • Zhang XH, Zhu YG, Lin AJ, Chen BD, Smith SE, Smith FA (2006) Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L. Chemosphere 64:1627–1632

    Article  CAS  Google Scholar 

  • Zhang Y, Lu J, Wu L, Chang A, Frankenberger WT (2007) Simultaneous removal of chlorothalonil and nitrate by Bacillus cereus strain NS1. Sci Total Environ 382:383–387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support was provided by the Environmental Monitoring Branch of the California Department of Pesticide Regulation (CDPR), California Environmental Protection Agency, under contract No. 10-C0102. The statements and conclusions are those of the authors and not necessarily those of CDPR. The mention of commercial products, their source, or their use in connection with materials reported herein is not to be construed as actual or implied endorsement of such products. Special thanks to Kean Goh for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to April R. Van Scoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Van Scoy, A.R., Tjeerdema, R.S. (2014). Environmental Fate and Toxicology of Chlorothalonil. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 232. Reviews of Environmental Contamination and Toxicology, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-06746-9_4

Download citation

Publish with us

Policies and ethics