Abdelwahab O, Amin NK, El-Ashtoukhy ESZ (2013) Removal of zinc ions from aqueous solution using a cation exchange resin. Chem Eng Res Des 91(1):165–173
CAS
Google Scholar
Abdullah A, Salamatinia B, Kamaruddin A (2009) Application of response surface methodology for the optimization of NaOH treatment on oil palm frond towards improvement in the sorption of heavy metals. Desalination 244(1):227–238
CAS
Google Scholar
Abia A, Asuquo E (2006) Lead (II) and nickel (II) adsorption kinetics from aqueous metal solutions using chemically modified and unmodified agricultural adsorbents. Afr J Biotechnol 5(16):1475–1482
CAS
Google Scholar
Abia A, Asuquo E (2007) Kinetics of Cd2+ and Cr3+ sorption from aqueous solutions using mercaptoacetic acid modified and unmodified oil palm fruit fibre(elaeis guineensis) adsorbents. Tsinghua Sci Technol 12(4):485–492
CAS
Google Scholar
Abia A, Asuquo E (2008) Sorption of Pb (II) and Cd (II) ions onto chemically unmodified and modified oil palm fruit fibre adsorbent: Analysis of pseudo second order kinetic models. Indian J Chem Technol 15(4):341–348
CAS
Google Scholar
Abu Al-Rub FA (2006) Biosorption of zinc on palm tree leaves: equilibrium, kinetics, and thermodynamics studies. Sep Sci Technol 41(15):3499–3515
CAS
Google Scholar
Agarwal G, Bhuptawat HK, Chaudhari S (2006) Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresour Technol 97(7):949–956
CAS
Google Scholar
Ahalya N, Kanamadi ND, Ramachandra TV (2006) Biosorption of Iron (III) from aqueous solutions using the husk of cicer arietinum. Indian J Chem Technol 13:122–127
CAS
Google Scholar
Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257
CAS
Google Scholar
Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ahmad A (2010) Removal of pesticides from water and wastewater by different adsorbents: A review. J Environ Sci Health C 28(4):231–271
CAS
Google Scholar
Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R (2011) Oil palm biomass–based adsorbents for the removal of water pollutants-A review. J Environ Sci Health C 29(3):177–222
CAS
Google Scholar
Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ibrahim MNM (2012) The use of date palm as a potential adsorbent for wastewater treatment: a review. Environ Sci Pollut Res Int 19(5):1464–1484
CAS
Google Scholar
Ahmaruzzaman M (2011) Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interface Sci 166(1):36–59
CAS
Google Scholar
Ahmed Basha C, Bhadrinarayana N, Anantharaman N, Meera Sheriffa Begum K (2008) Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor. J Hazard Mater 152(1):71–78
CAS
Google Scholar
Ajmal M, Rao RAK, Ahmad R, Khan MA (2006) Adsorption studies on parthenium hysterophorous weed: removal and recovery of Cd(II) from wastewater. J Hazard Mater 135(1):242–248
CAS
Google Scholar
Akaninwor J, Wegwu M, Iba I (2007) Removal of iron, zinc and magnesium from polluted water samples using thioglycolic modified oil-palm fibre. Afr J Biochem Res 1(2):011–013
Google Scholar
Akar ST, Akar T, Kaynak Z, Anilan B, Cabuk A, Tabak O, Demir TA, Gedikbey T (2009) Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy 97(1–2):98–104
CAS
Google Scholar
Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108(1–2):85–94
CAS
Google Scholar
Aksu Z, İşoğlu İA (2005) Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem 40(9):3031–3044
CAS
Google Scholar
Al Aji B, Yavuz Y, Koparal AS (2012) Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Sep Purif Technol 86:248–254
CAS
Google Scholar
Al Rmalli SW, Dahmani AA, Abuein MM, Gleza AA (2008) Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.). J Hazard Mater 152(3):955–959
CAS
Google Scholar
Alam MZ, Muyibi SA, Kamaldin N (2008) Production of Activated carbon from oil palm empty fruit bunches for removal of zinc. In: Twelfth international water technology conference (IWTC12), Egypt, Alexandria, pp 1–11
Google Scholar
Alomá I, Martín-Lara M, Rodríguez I, Blázquez G, Calero M (2012) Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J Taiwan Inst Chem Eng 43(2):275–281
Google Scholar
Aman T, Kazi AA, Sabri MU, Bano Q (2008) Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent. Colloid Surf B 63(1):116–121
CAS
Google Scholar
Amarasinghe B, Williams R (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132(1):299–309
CAS
Google Scholar
Anwar J, Shafique U, Salman M, Dar A, Anwar S (2010) Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresour Technol 101(6):1752–1755
CAS
Google Scholar
Asubiojo O, Ajelabi O (2009) Removal of heavy metals from industrial wastewaters using natural adsorbents. Toxicol Environ Chem 91(5):883–890
CAS
Google Scholar
Aziz A, Ouali MS, Elandaloussi EH, De Menorval LC, Lindheimer M (2009) Chemically modified olive stone: a low-cost sorbent for heavy metals and basic dyes removal from aqueous solutions. J Hazard Mater 163(1):441–447
CAS
Google Scholar
Babarinde NA, Babalola JO, Sanni RA (2006) Biosorption of lead ions from aqueous solution by maize leaf. Int J Phys Sci 1(1):23–26
Google Scholar
Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479
CAS
Google Scholar
Barakat M, Schmidt E (2010) Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 256(1):90–93
CAS
Google Scholar
Basso M, Cerrella E, Cukierman A (2002) Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater. Ind Eng Chem Res 41(15):3580–3585
CAS
Google Scholar
Bhatnagar A, Minocha A, Sillanpää M (2010) Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem Eng J 48(2):181–186
CAS
Google Scholar
Bhattacharya A, Mandal S, Das S et al (2006) Adsorption of Zn (II) from aqueous solution by using different adsorbents. Chem Eng J 123(1):43–51
CAS
Google Scholar
Blázquez G, Martín-Lara M, Tenorio G, Calero M (2011) Batch biosorption of lead (II) from aqueous solutions by olive tree pruning waste: equilibrium, kinetics and thermodynamic study. Chem Eng J 168(1):170–177
Google Scholar
Bulgariu L, Ratoi M, Bulgariu D, Macoveanu M (2009) Adsorption potential of mercury (II) from aqueous solutions onto Romanian peat moss. J Environ Sci Health A 44(7):700–706
CAS
Google Scholar
Bulut Y, Tez Z (2007a) Adsorption studies on ground shells of hazelnut and almond. J Hazard Mater 149(1):35–41
CAS
Google Scholar
Bulut Y, Tez Z (2007b) Removal of heavy metals from aqueous solution by sawdust adsorption. J Environ Sci 19(2):160–166
CAS
Google Scholar
Chafi M, Gourich B, Essadki AH, Vial C, Fabregat A (2011) Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination 281:285–292
CAS
Google Scholar
Chakravarty P, Sarma NS, Sarma H (2010) Biosorption of cadmium(II) from aqueous solution using heartwood powder of Areca catechu. Chem Eng J 162(3):949–955
CAS
Google Scholar
Chandra Sekhar K, Kamala C, Chary N, Sastry A, Nageswara Rao T, Vairamani M (2004) Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. J Hazard Mater 108(1):111–117
CAS
Google Scholar
Chatterjee S, Bhattacharjee I, Chandra G (2010) Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. J Hazard Mater 175(1):117–125
CAS
Google Scholar
Chen D, Li Y, Zhang J, Li W, Zhou J, Shao L, Qian G (2012) Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater. J Hazard Mater 243:152–160
CAS
Google Scholar
Chong H, Chia P, Ahmad M (2012) The adsorption of heavy metal by Bornean oil palm shell and its potential application as constructed wetland media. Bioresour Technol 130:181–186
Google Scholar
Chu KH, Hashim MA (2002) Adsorption and desorption characteristics of zinc on ash particles derived from oil palm waste. J Chem Technol Biotechnol 77(6):685–693
CAS
Google Scholar
Chu K, Hashim M (2003) Kinetic studies of copper (II) and nickel (II) adsorption by oil palm ash. J Ind Eng Chem 9(2):163–167
CAS
Google Scholar
Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169
CAS
Google Scholar
Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157(2):220–229
CAS
Google Scholar
Demirbas A, Sari A, Isildak O (2006) Adsorption thermodynamics of stearic acid onto bentonite. J Hazard Mater 135(1):226–231
CAS
Google Scholar
Duruibe J, Ogwuegbu M, Egwurugwu J (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118
Google Scholar
Egashira R, Tanabe S, Habaki H (2012) Adsorption of heavy metals in mine wastewater by Mongolian natural zeolite. Procedia Eng 42:54–64
CAS
Google Scholar
Elizalde-González MP, Mattusch J, Wennrich R (2008) Chemically modified maize cobs waste with enhanced adsorption properties upon methyl orange and arsenic. Bioresour Technol 99(11):5134–5139
Google Scholar
El-Sayed GO, Dessouki HA, Ibrahiem SS (2011) Removal of zn(ii), cd(ii) and mn(ii) from aqueous solutions by adsorption on maize stalks. Malayas J Anal Sci 15(1):8–21
Google Scholar
Eom Y, Won JH, Ryu J-Y, Lee TG (2011) Biosorption of mercury (II) ions from aqueous solution by garlic (Allium sativum L.) powder. Korean J Chem Eng 28(6):1439–1443
CAS
Google Scholar
Ertugay N, Bayhan Y (2010) The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination 255(1):137–142
CAS
Google Scholar
Fan H-T, Sun T, Xu H-B, Yang Y-J, Tang Q, Sun Y (2011) Removal of arsenic (V) from aqueous solutions using 3-[2-(2-aminoethylamino) ethylamino] propyl-trimethoxysilane functionalized silica gel adsorbent. Desalination 278(1):238–243
CAS
Google Scholar
Feng N, Guo X, Liang S, Zhu Y, Liu J (2011) Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J Hazard Mater 185(1):49–54
CAS
Google Scholar
Fu F, Xie L, Tang B, Wang Q, Jiang S (2012) Application of a novel strategy—advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater. Chem Eng J 189:283–287
Google Scholar
García-Gabaldón M, Pérez-Herranz V, García-Antón J, Guinon J (2006) Electrochemical recovery of tin from the activating solutions of the electroless plating of polymers: galvanostatic operation. Sep Purif Technol 51(2):143–149
Google Scholar
García-Mendieta A, Olguín MT, Solache-Ríos M (2012) Biosorption properties of green tomato husk (Physalis philadelphica Lam) for iron, manganese and iron–manganese from aqueous systems. Desalination 284:167–174
Google Scholar
Gübbük IH, Hatay I, Coşkun A, Ersöz M (2009) Immobilization of oxime derivative on silica gel for the preparation of new adsorbent. J Hazard Mater 172(2):1532–1537
Google Scholar
Gulnaziya I, Kheireddine AM, Kim CS (2012) Biomodification of palm shell activated carbon using Aspergillus niger and Bacillus subtilis and its effect on the adsorption of lead ions from aqueous solutions. Afr J Biotechnol 11(82):14812–14821
Google Scholar
Gundogdu A, Ozdes D, Duran C, Bulut VN, Soylak M, Senturk HB (2009) Biosorption of Pb(II) ions from aqueous solution by pine bark (Pinus brutia Ten.). Chem Eng J 153(1):62–69
CAS
Google Scholar
Güzel F, Yakut H, Topal G (2008) Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. J Hazard Mater 153(3):1275–1287
Google Scholar
Haron MJ, Tiansih M, Ibrahim NA, Kassim A, Yunus WMZW (2009) Sorption of Cu (II) by poly (Hydroxamic Acid) chelating exchanger prepared from polymethyl acrylate grafted oil palm empty fruit bunch (OPEFB). Bioresources 4(4):1305–1318
CAS
Google Scholar
Hasan S, Singh K, Prakash O, Talat M, Ho Y (2008) Removal of Cr (VI) from aqueous solutions using agricultural waste ‘maize bran’. J Hazard Mater 152(1):356–365
CAS
Google Scholar
Hashem MA (2007) Adsorption of lead ions from aqueous solution by okra wastes. Int J Phys Sci 2:178–184
Google Scholar
Hashem A, Abdel-Halim E, El-Tahlawy KF, Hebeish A (2005) Enhancement of the adsorption of Co (II) and Ni (II) ions onto peanut hulls through esterification using citric acid. Adsorpt Sci Technol 23(5):367–380
CAS
Google Scholar
Ho Y-S (2003) Removal of copper ions from aqueous solution by tree fern. Water Res 37(10):2323–2330
CAS
Google Scholar
Ho Y-S, Ofomaja AE (2005) Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution. Process Biochem 40(11):3455–3461
CAS
Google Scholar
Ho Y-S, Ofomaja AE (2006a) Kinetic studies of copper ion adsorption on palm kernel fibre. J Hazard Mater 137(3):1796–1802
CAS
Google Scholar
Ho Y-S, Ofomaja AE (2006b) Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. J Hazard Mater 129(1–3):137–142
CAS
Google Scholar
Hossain M, Ngo H, Guo W, Nguyen T (2012) Palm oil fruit shells as biosorbent for copper removal from water and wastewater: experiments and sorption models. Bioresour Technol 113:97–101
CAS
Google Scholar
Ibrahim MNM, Nagah WSW, Norliyana MS, Daud WRW, Rafatullah M, Sulaiman O, Hashim R (2010) A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions. J Hazard Mater 182(1–3):377–385
CAS
Google Scholar
Ideriah T, David O, Ogbonna D (2012) Removal of heavy metal ions in aqueous solutions using palm fruit fibre as adsorbent. J Environ Chem Ecotoxicol 4(4):82–90
CAS
Google Scholar
Igwe J, Abia A (2006) A bioseparation process for removing heavy metals from waste water using biosorbents. Afr J Biotechnol 5(11):1167–1179
CAS
Google Scholar
Isa MH et al (2008) Removal of chromium (VI) from aqueous solution using treated oil palm fibre. J Hazard Mater 152(2):662–668
CAS
Google Scholar
Israel U, Eduok U (2012) Biosorption of zinc from aqueous solution using coconut (Cocos nucifera L) coir dust. Arch Appl Sci Res 4(2):809–819
CAS
Google Scholar
Issabayeva G, Aroua MK, Sulaiman NMN (2006) Removal of lead from aqueous solutions on palm shell activated carbon. Bioresour Technol 97(18):2350–2355
CAS
Google Scholar
Issabayeva G, Aroua MK, Sulaiman NM (2008) Continuous adsorption of lead ions in a column packed with palm shell activated carbon. J Hazard Mater 155(1–2):109–113
CAS
Google Scholar
Iyagba ET, Opete OS (2009) Removal of chromium and lead from drill cuttings using activated palm kernel shell and husk. Afr J Environ Sci Technol 3(7):171–179
CAS
Google Scholar
Ji F, Li C, Tang B, Xu J, Lu G, Liu P (2012) Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution. Chem Eng J 209:325–333
CAS
Google Scholar
Kabbashi NA, Elwathig M, Jamil INB (2011) Application of activated carbon from empty fruit bunch (EFB) for mercury [Hg (II)] removal from aqueous solution. Afr J Biotechnol 10(81):18768–18774
CAS
Google Scholar
Kalinci Y, Hepbasli A, Dincer I (2011) Comparative exergetic performance analysis of hydrogen production from oil palm wastes and some other biomasses. Int J Hydrogen Energy 36(17): 11399–11407
CAS
Google Scholar
Karvelas M, Katsoyiannis A, Samara C (2003) Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere 53(10):1201–1210
CAS
Google Scholar
Kazemipour M, Ansari M, Tajrobehkar S, Majdzadeh M, Kermani HR (2008) Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. J Hazard Mater 150(2):322–327
CAS
Google Scholar
Khalid N, Ali S, Iqbal A, Pervez S (2007) Sorption potential of styrene-divinylbenzene copolymer beads for the decontamination of lead from aqueous media. Sep Sci Technol 42(1):203–222. doi:10.1080/01496390600957041
CAS
Google Scholar
Khan MA, Rao RAK, Ajmal M (2008) Heavy metal pollution and its control through non-conventional adsorbents (1998–2007): a review. J Int Environ Appl Sci 3(2):101–141
Google Scholar
Khoramzadeh E, Nasernejad B, Halladj R (2012) Mercury biosorption from aqueous solutions by Sugarcane Bagasse. J Taiwan Inst Chem Eng 44(2):266–269
Google Scholar
Khraisheh MA, Al-degs YS, Mcminn WA (2004) Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem Eng J 99(2):177–184
CAS
Google Scholar
Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521
CAS
Google Scholar
Ku Y, Chiou H-M (2002) The adsorption of fluoride ion from aqueous solution by activated alumina. Water Air Soil Pollut 133(1–4):349–361
CAS
Google Scholar
Kurniawan TA, Chan G, Lo W-H, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1):83–98
CAS
Google Scholar
Li Z, Imaizumi S, Katsumi T, Inui T, Tang X, Tang Q (2010) Manganese removal from aqueous solution using a thermally decomposed leaf. J Hazard Mater 177(1–3):501–507
CAS
Google Scholar
Liang S, Guo X, Tian Q (2011) Adsorption of Pb2+ and Zn2+ from aqueous solutions by sulfured orange peel. Desalination 275(1):212–216
CAS
Google Scholar
Low K, Lee C, Tan C (1996) Enhancement of copper sorption through acid blue 29 treated oil palm pressed fibres. Pertanika J Sci Technol 4(1):41–50
Google Scholar
Lugo-Lugo V, Barrera-Díaz C, Ureña-Núñez F, Bilyeu B, Linares-Hernández I (2012) Biosorption of Cr (III) and Fe (III) in single and binary systems onto pretreated orange peel. J Environ Manage 112:120–127
CAS
Google Scholar
Mahmoud ME, Osman MM, Hafez OF, Hegazi AH, Elmelegy E (2010) Removal and preconcentration of lead (II) and other heavy metals from water by alumina adsorbents developed by surface-adsorbed-dithizone. Desalination 251(1):123–130
CAS
Google Scholar
Malkoc E, Nuhoglu Y (2007) Potential of tea factory waste for chromium (VI) removal from aqueous solutions: thermodynamic and kinetic studies. Sep Purif Technol 54(3):291–298
CAS
Google Scholar
Mohammad N, Alam MZ, Kabbashi NA, Ahsan A (2012) Effective composting of oil palm industrial waste by filamentous fungi: a review. Resour Conserv Recy 58:69–78
Google Scholar
Mohammadi T, Razmi A, Sadrzadeh M (2004) Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination 167:379–385
CAS
Google Scholar
Mohammed M, Salmiaton A, Wan Azlina W, Mohammad Amran M, Fakhru’l-Razi A, Taufiq-Yap Y (2011) Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renew Sust Energ Rev 15(2):1258–1270
CAS
Google Scholar
Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137(2):762–811
CAS
Google Scholar
Mortaheb HR, Kosuge H, Mokhtarani B, Amini MH, Banihashemi HR (2009) Study on removal of cadmium from wastewater by emulsion liquid membrane. J Hazard Mater 165(1–3): 630–636
CAS
Google Scholar
Najafi M, Rostamian R, Rafati A (2011) Chemically modified silica gel with thiol group as an adsorbent for retention of some toxic soft metal ions from water and industrial effluent. Chem Eng J 168(1):426–432
CAS
Google Scholar
Nemr AE (2009) Potential of pomegranate husk carbon for Cr (VI) removal from wastewater: kinetic and isotherm studies. J Hazard Mater 161(1):132–141
Google Scholar
Nomanbhay SM, Palanisamy K (2005) Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron J Biotechnol 8(1):43–53
CAS
Google Scholar
Nwabanne JT, Igbokwe PK (2012) Adsorption performance of packed bed column for the removal of lead (ii) using oil palm fibre. Int J Appl Sci Technol 2(5):106–115
Google Scholar
Nwabanne JT, Okoye AC, Lebele-Alawa BT (2011) Packed bed column studies for the removal of lead (ii) using oil palm empty fruit bunch. Eur J Sci Res 63(2):296–305
Google Scholar
O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99(15):6709–6724
Google Scholar
Ofomaja AE (2010) Equilibrium studies of copper ion adsorption onto palm kernel fibre. J Environ Manage 91(7):1491–1499
CAS
Google Scholar
Oliveira WE, Franca AS, Oliveira LS, Rocha SD (2008) Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J Hazard Mater 152(3):1073–1081
CAS
Google Scholar
Oluyemi EA, Adeyemi AF, Olabanji IO (2012) Removal of Pb2+ and Cd2+ ions from wastewaters using palm kernel shell charcoal (PKSC). Res J Eng Appl Sci 1(5):308–313
Google Scholar
Onundi YB, Mamun A, Al Khatib M, Ahmed Y (2010) Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int J Environ Sci Technol 7(4):751–758
CAS
Google Scholar
Peng F, Sun R-C (2010) Chapter 7.2—Modification of cereal straws as natural sorbents for removing metal ions from industrial waste water Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Elsevier, Amsterdam, pp 219–237
Google Scholar
Pereira FV, Gurgel LVA, Gil LF (2010) Removal of Zn2+ from aqueous single metal solutions and electroplating wastewater with wood sawdust and sugarcane bagasse modified with EDTA dianhydride (EDTAD). J Hazard Mater 176(1–3):856–863
CAS
Google Scholar
Prasad AD, Abdullah MA (2009) Biosorption of Fe (II) from aqueous solution using Tamarind Bark and potato peel waste: equilibrium and kinetic studies. J Appl Sci Environ Sanit 4(3):273–282
Google Scholar
Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10(5):716–724
CAS
Google Scholar
Radzi bin Abas M, Oros DR, Simoneit BR (2004) Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere 55(8):1089–1095
CAS
Google Scholar
Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1):70–80
CAS
Google Scholar
Rafatullah M, Ahmad T, Ghazali A, Sulaiman O, Danish M, Hashim R (2013) Oil palm biomass as a precursor of activated carbons: a review. Crit Rev Environ Sci Technol 43(11):1117–1161
CAS
Google Scholar
Rahman M, Awang M, Mohosina B, Kamaruzzaman B, Nik W, Adnan C (2012) Waste palm shell converted to high efficient activated carbon by chemical activation method and its adsorption capacity tested by water filtration. APCBEE Procedia 1:293–298
CAS
Google Scholar
Rao RA, Rehman F (2010) Adsorption studies on fruits of Gular (Ficus glomerata): removal of Cr(VI) from synthetic wastewater. J Hazard Mater 181(1):405–412
CAS
Google Scholar
Razmovski R, Šćiban M (2008) Biosorption of Cr (VI) and Cu (II) by waste tea fungal biomass. Ecol Eng 34(2):179–186
Google Scholar
Reddy D, Harinath Y, Seshaiah K, Reddy A (2010) Biosorption of Pb(II) from aqueous solutions using chemically modified Moringa oleifera tree leaves. Chem Eng J 162(2):626–634
CAS
Google Scholar
Reddy D, Ramana D, Seshaiah K, Reddy A (2011) Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination 268(1):150–157
CAS
Google Scholar
Rupani PF, Singh RP, Ibrahim MH, Esa N (2010) Review of current palm oil mill effluent (POME) treatment methods: vermicomposting as a sustainable practice. World Appl Sci J 11(1):70–81
CAS
Google Scholar
Saeed A, Akhter MW, Iqbal M (2005) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep Purif Technol 45(1):25–31
CAS
Google Scholar
Saeed A, Iqbal M, Höll WH (2009) Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk. J Hazard Mater 168(2):1467–1475
CAS
Google Scholar
Saifuddin MN, Kumaran P (2005) Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron J Biotechnol 8(1):43–53
Google Scholar
Salamatinia B, Zinatizadeh AA, Razali N, Abdullah AZ (2006) Chemical pre-treatments of oil palm frond for improvement in the removal of zn and cu from wastewater by sorption process. Paper presented at the 1st international conference on natural resources engineering and technology 2006, Putrajaya, Malaysia
Google Scholar
Salamatinia B, Kamaruddin A, Abdullah A (2007) Removal of Zn and Cu from wastewater by sorption on oil palm tree-derived biomasses. J Appl Sci 7(15):2020–2027
CAS
Google Scholar
Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280(1):1–13
CAS
Google Scholar
Sankararamakrishnan N, Sharma AK, Sanghi R (2007) Novel chitosan derivative for the removal of cadmium in the presence of cyanide from electroplating wastewater. J Hazard Mater 148(1–2):353–359
CAS
Google Scholar
Sekomo CB, Rousseau DP, Saleh SA, Lens PN (2012) Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol Eng 44:102–110
Google Scholar
Sheibani A, Shishehbor MR, Alaei H (2012) Removal of Fe (III) ions from aqueous solution by hazelnut hull as an adsorbent. Int J Ind Chem 3(1):1–3
Google Scholar
Silva AM, Cruz FLS, Lima RMF, Teixeira MC, Leão VA (2010) Manganese and limestone interactions during mine water treatment. J Hazard Mater 181(1–3):514–520
CAS
Google Scholar
Singh TS, Pant K (2004) Equilibrium, kinetics and thermodynamic studies for adsorption of As (III) on activated alumina. Sep Purif Technol 36(2):139–147
CAS
Google Scholar
Singha B, Das SK (2013) Adsorptive removal of Cu (II) from aqueous solution and industrial effluent using natural/agricultural wastes. Colloids Surf B 1(107):97–106
Google Scholar
Srivastava N, Majumder C (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151(1):1–8
CAS
Google Scholar
Sthiannopkao S, Sreesai S (2009) Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater. J Environ Manage 90(11):3283–3289
CAS
Google Scholar
Subbaiah MV, Vijaya Y, Kumar NS, Reddy AS, Krishnaiah A (2009) Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: kinetics and equilibrium studies. Colloids Surf B 74(1):260–265
CAS
Google Scholar
Sugawara K, Wajima T, Kato T, Sugawara T (2007) Preparation of carbonaceous heavy metal adsorbent from palm shell using sulfur impregnation. Ars Separatoria Acta 5:88–98
Google Scholar
Sulaiman O, Salim N, Hashim R, Yusof LHM, Razak W, Yunus NYM, Hashim WS, Azmy MH (2009) Evaluation on the suitability of some adhesives for laminated veneer lumber from oil palm trunks. Mater Des 30(9):3572–3580
CAS
Google Scholar
Sulaiman O, Amini M, Hazim M, Rafatullah M, Hashim R, Ahmad A (2010) Adsorption equilibrium and thermodynamic studies of copper (II) ions from aqueous solutions by oil palm leaves. Int J Chem React Eng 8(1):1–18
Google Scholar
Sun Y, Webley PA (2010) Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chem Eng J 162(3):883–892
CAS
Google Scholar
Tan W, Ooi S, Lee C (1993) Removal of chromium (VI) from solution by coconut husk and palm pressed fibres. Environ Technol 14(3):277–282
CAS
Google Scholar
Tan W, Lee C, Ng K (1996) Column studies of copper (II) and nickel (II) ions sorption on palm pressed fibres. Environ Technol 17(6):621–628
CAS
Google Scholar
Tan I, Ahmad A, Hameed B (2008) Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem Eng J 137(3):462–470
CAS
Google Scholar
Tijani JO (2011) Sorption of lead (ii) and copper (ii) ions from aqueous solution by acid modified and unmodified Gmelina Arborea (Verbenaceae) leaves. J Emerg Trend Eng Appl Sci 2(5):734–740
CAS
Google Scholar
Torab-Mostaedi M, Asadollahzadeh M, Hemmati A, Khosravi A (2013) Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J Taiwan Inst Chem Eng 44(2):295–302
CAS
Google Scholar
Tsekova K, Todorova D, Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int Biodeter Biodegr 64(6):447–451
CAS
Google Scholar
Uemura Y, Omar WN, Tsutsui T, Yusup SB (2011) Torrefaction of oil palm wastes. Fuel 90(8):2585–2591
CAS
Google Scholar
Urgun-Demirtas M, Benda PL, Gillenwater PS, Negri MC, Xiong H, Snyder SW (2012) Achieving very low mercury levels in refinery wastewater by membrane filtration. J Hazard Mater 215:98–107
Google Scholar
Vaghetti JC et al (2009) Pecan nutshell as biosorbent to remove Cu (II), Mn (II) and Pb (II) from aqueous solutions. J Hazard Mater 162(1):270–280
CAS
Google Scholar
Vargas AM, Garcia CA, Reis EM, Lenzi E, Costa WF, Almeida VC (2010) NaOH-activated carbon from flamboyant (Delonix regia) pods: optimization of preparation conditions using central composite rotatable design. Chem Eng J 162(1):43–50
CAS
Google Scholar
Vázquez G, Calvo M, Sonia Freire M, González-Alvarez J, Antorrena G (2009) Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal. J Hazard Mater 172(2):1402–1414
Google Scholar
Venugopal V, Mohanty K (2011) Biosorptive uptake of Cr(VI) from aqueous solutions by Parthenium hysterophorus weed: equilibrium, kinetics and thermodynamic studies. Chem Eng J 174(1):151–158
CAS
Google Scholar
Vieira MGA, Neto AFA, Gimenes ML, da Silva MGC (2010) Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. J Hazard Mater 177(1–3):362–371
CAS
Google Scholar
Vinod V et al (2011) Bioremediation of mercury (II) from aqueous solution by gum karaya (Sterculia urens): a natural hydrocolloid. Desalination 272(1):270–277
CAS
Google Scholar
Wahi R, Ngaini Z, Jok VU (2009) Removal of mercury, lead and copper from aqueous solution by activated carbon of palm oil empty fruit bunch. World Appl Sci J 5:84–91
Google Scholar
Wan Nik W, Rahman M, Yusof A, Ani F, Adnan C (2006) Production of activated carbon from palm oil shell waste and its adsorption characteristics. In: 1st international conference on natural resources engineering and technology 2006, Putrajaya, Malaysia, pp 646–654
Google Scholar
Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156(1):11–24
CAS
Google Scholar
Wang X-S, Qin Y (2006) Removal of Ni(II), Zn(II) and Cr(VI) from aqueous solution by Alternanthera philoxeroides biomass. J Hazard Mater 138(3):582–588
CAS
Google Scholar
Wang L, Wang R, Oliveira R (2009) A review on adsorption working pairs for refrigeration. Renew Sust Energ Rev 13(3):518–534
CAS
Google Scholar
Xing Y, Chen X, Wang D (2007) Electrically regenerated ion exchange for removal and recovery of Cr (VI) from wastewater. Environ Sci Technol 41(4):1439–1443
CAS
Google Scholar
Yadla SV, Sridevi V, Lakshmi MVVC (2012) A review on adsorption of heavy metals from aqueous solution. J Chem Biol Phys Sci 2(3):585–1593
Google Scholar
Yin C, Aroua M, Daud W (2008a) Enhanced adsorption of metal ions onto polyethyleneimine-impregnated palm shell activated carbon: equilibrium studies. Water Air Soil Pollut 192 (1–4):337–348. doi:10.1007/s11270-008-9660-9
CAS
Google Scholar
Yin CY, Aroua MK, Daud WMAW (2008b) Polyethyleneimine impregnation on activated carbon: effects of impregnation amount and molecular number on textural characteristics and metal adsorption capacities. Mater Chem Phys 112(2):417–422
CAS
Google Scholar
Ying X, Fang Z (2006) Experimental research on heavy metal wastewater treatment with dipropyl dithiophosphate. J Hazard Mater 137(3):1636–1642
CAS
Google Scholar
Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20(2):351–360
CAS
Google Scholar