A New Approach to Solve the Software Project Scheduling Problem Based on Max–Min Ant System

  • Broderick Crawford
  • Ricardo Soto
  • Franklin Johnson
  • Eric Monfroy
  • Fernando Paredes
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 285)

Abstract

This paper presents a new approach to solve the Software Project Scheduling Problem. This problem is NP-hard and consists in finding a worker-task schedule that minimizes cost and duration for the whole project, so that task precedence and resource constraints are satisfied. Such a problem is solved with an Ant Colony Optimization algorithm by using the Max–Min Ant System and the Hyper-Cube framework. We illustrate experimental results and compare with other techniques demonstrating the feasibility and robustness of the approach, while reaching competitive solutions.

Keywords

Software engineering Software project scheduling problem Project management Ant colony optimization Max–Min ant system 

References

  1. 1.
    Abdallah, H., Emara, H.M., Dorrah, H.T., Bahgat, A.: Using ant colony optimization algorithm for solving project management problems. Expert Syst. Appl. 36(6), 10004–10015 (2009)CrossRefGoogle Scholar
  2. 2.
    Alba, E., Chicano, F.: Software project management with gas. Inf. Sci. 177(11), 2380–2401 (2007) (in press)Google Scholar
  3. 3.
    Barreto, A., Barros, MdO, Werner, C.M.L.: Staffing a software project: a constraint satisfaction and optimization-based approach. Comput. Oper. Res. 35(10), 3073–3089 (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. Syst. Man Cybern. Part B Cybern. IEEE Trans. 34(2), 1161–1172 (2004)CrossRefGoogle Scholar
  5. 5.
    Chang, C.K., yi Jiang, H., Di, Y., Zhu, D., Ge, Y.: Time-line based model for software project scheduling with genetic algorithms. Inf. Softw. Technol. 50(11), 1142–1154 (2008)CrossRefGoogle Scholar
  6. 6.
    Chen, W., Zhang, J.: Ant colony optimization for software project scheduling and staffing with an event-based scheduler. Softw. Eng. IEEE Trans. 39(1), 1–17 (2013)CrossRefMATHGoogle Scholar
  7. 7.
    Crawford, B., Soto, R., Castro, C., Monfroy, E.: Extensible cp-based autonomous search. In: Proceedings of HCI International, vol. 173 of CCIS, pp. 561–565. Springer (2011)Google Scholar
  8. 8.
    Crawford, B., Soto, R., Johnson, F., Monfroy, E.: Ants can schedule software projects. In: Stephanidis, C. (ed.) HCI International 2013—Posters Extended Abstracts, volume 373 of Communications in Computer and Information Science, pp. 635–639. Springer, Berlin (2013)Google Scholar
  9. 9.
    Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40(5), 1690–1695 (2013)CrossRefGoogle Scholar
  10. 10.
    Dorigo, M. Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, vol. 2, p. 1477 (1999)Google Scholar
  11. 11.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)Google Scholar
  12. 12.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, USA (2004)CrossRefMATHGoogle Scholar
  13. 13.
    Johnson, F., Crawford, B., Palma, W.: Hypercube framework for ACO applied to timetabling. In: IFIP AI, pp. 237–246 (2006)Google Scholar
  14. 14.
    Liao, T.W., Egbelu, P., Sarker, B., Leu, S.: Metaheuristics for project and construction management a state-of-the-art review. Autom. Constr. 20(5), 491–505 (2011)CrossRefGoogle Scholar
  15. 15.
    Monfroy, E., Castro, C., Crawford, B., Soto, R., Paredes, F., Figueroa, C.: A reactive and hybrid constraint solver. J. Exp. Theor. Artif. Intell. 25(1), 1–22 (2013)CrossRefGoogle Scholar
  16. 16.
    Ozdamar, L., Ulusoy, G.: A survey on the resource-constrained project scheduling problem. IIE Trans. 27(5), 574–586 (1995)CrossRefGoogle Scholar
  17. 17.
    Stutzle, T., Hoos, H.H.: Maxmin ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)CrossRefGoogle Scholar
  18. 18.
    Xiao, J., Ao, X.T., Tang, Y.: Solving software project scheduling problems with ant colony optimization. Comput. Oper. Res. 40(1), 33–46 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Broderick Crawford
    • 1
    • 3
  • Ricardo Soto
    • 1
    • 4
  • Franklin Johnson
    • 1
    • 2
  • Eric Monfroy
    • 5
  • Fernando Paredes
    • 6
  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad de Playa AnchaValparaísoChile
  3. 3.Universidad Finis TerraeSantiagoChile
  4. 4.Universidad Autónoma de ChileTemucoChile
  5. 5.CNRS, LINA, Université de NantesNantesFrance
  6. 6.Universidad Diego PortalesSantiagoChile

Personalised recommendations