Advertisement

On the Simulation of the Brain Activity: A Brief Survey

  • Jaromir SvejdaEmail author
  • Roman Zak
  • Roman Jasek
  • Roman Senkerik
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 285)

Abstract

This article represents the brief introduction into the issues of simulation of brain activity. Firstly, there is shown a physiological description of the human brain, which summarizes current knowledge and also points out its complexity. These facts were obtained through the technologies, which are intended for observing electrical activity of the brain; for example invasive methods, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Then, there are described approaches to simulate the brain activity. First of them is a standard model, which is the basis of most current methods. Second model is based on simulation of brain rhythm changes. Finally, there is discussed possible utilization of complex networks to create a biological neural network.

Keywords

Hodgkin–Huxley model Complex networks Brain activity Neural networks 

Notes

Acknowledgments

This work was supported by Internal Grant Agency of Tomas Bata University under the project No. IGA/FAI/2013/35.

References

  1. 1.
    Adeli, H.: Wavelet-chaos-neural network models for EEG-based diagnosis of neurological disorders. In: Kim, T-H., Lee, Y-H., Kang, B-H., Ślęzak, D. (eds.) Future Generation Information Technology, vol. 6485, pp. 1–11. Lecture Notes in Computer Science. Springer, Berlin Heidelberg (2010). doi: 10.1007/978-3-642-17569-5_1
  2. 2.
    Zapotocky, M.: Neuro-Informatics and Modelling of Brain Activity—Academy of Sciences of the Czech Republic (online in Czech). Available from. http://press.avcr.cz/Evropsky_tyden_mozku/zaznamy-z-prednasek/2011/110317-neuroinformatika-zapotocky.html (2011)
  3. 3.
    Sporns, O., Tononi, G., Kötter, R.: The human connectome: A structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)CrossRefGoogle Scholar
  4. 4.
    Damasio, H.: Human Brain Anatomy in Computerized Images. Oxford University Press, Oxford (1995)Google Scholar
  5. 5.
    Nelson, M., Rinzel, J.: The Hodgkin–Huxley model. In: The Book of Genesis, pp. 29–49. Springer, New York (1998)Google Scholar
  6. 6.
    Mrazek, J.: Modelling of Ionic Currents Appear in Isolated Cardiac Cells (Online in Czech). Available from. http://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=18861 (2009)
  7. 7.
    Abbott, L.F., Kepler, T.B.: Model neurons: From Hodgkin–Huxley to hopfield. Statistical Mechanics of Neural Networks, pp. 5–18. Springer, Berlin Heidelberg (1990)CrossRefGoogle Scholar
  8. 8.
    Hille, B.: Ion Channels of Excitable Membranes. Sinauer Associates Inc., Sunderland (2001)Google Scholar
  9. 9.
    Buzsaki, G.: Rhythms of the Brain. Oxford University Press, Oxford (2009)Google Scholar
  10. 10.
    Cornelis, S., Reijneveld, J.C.: Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1(1), 3 (2007). ISSN 17534631Google Scholar
  11. 11.
    Barabási, Albert-László: Linked: How Everything is Connected to Everything Else and What it Means for Business, Science, and Everyday Life. Plume, New York (2003). ISBN 04-522-8439-2Google Scholar
  12. 12.
    Emotiv | EEG System | Electroencephalography (Online). Available from. http://www.emotiv.com/index.php (2012)

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jaromir Svejda
    • 1
    Email author
  • Roman Zak
    • 1
  • Roman Jasek
    • 1
  • Roman Senkerik
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations