Skip to main content

Dressing with Control: Using Integrability to Generate Desired Solutions to Einstein’s Equations

  • Chapter
  • First Online:
The sine-Gordon Model and its Applications

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 10))

Abstract

Motivated by integrability of the sine-Gordon equation, we investigate a technique for constructing desired solutions to Einstein’s equations by combining a dressing technique with a control-theory approach. After reviewing classical integrability, we recall two well-known Killing field reductions of Einstein’s equations, unify them using a harmonic map formulation, and state two results on the integrability of the equations and solvability of the dressing system. The resulting algorithm is then combined with an asymptotic analysis to produce constraints on the degrees of freedom arising in the solution-generation mechanism. The approach is carried out explicitly for the Einstein vacuum equations. Applications of the technique to other geometric field theories are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term integrable has been adopted in various contexts, and is ambiguous in characterizing the features of such an equation (e.g., existence of closed-form solutions by quadrature, possessing infinitely many conservation laws, exhibiting solitonic dynamics, etc.). We shall restrict our attention to those equations which are integrable in the Lax sense.

  2. 2.

    It is a long-standing open problem to characterize the PDEs which admit a Lax formulation.

  3. 3.

    It also hinges on space being non-compact and one dimensional.

  4. 4.

    Although one is no longer considering an eigenvalue problem in the classical sense, λ is often still called a spectral parameter.

  5. 5.

    Using the transformation \(x =\zeta +\eta,t =\zeta -\eta\), one may easily recover the second recognizable form of the sine-Gordon equation, \(u_{\mathit{xx}} - u_{\mathit{tt}} =\sin u\).

  6. 6.

    Asymptotically flat solutions represent vacuum outside an isolated body.

  7. 7.

    The sine-Gordon equation can also be put into this framework, see [22].

  8. 8.

    The metric is Riemannian if G is a compact group.

  9. 9.

    Note that by virtue of the Cartan embedding, a symmetric space can be embedded into a Lie group, for which one may choose a matrix representation, thus making addition and scalar multiplication of elements possible.

  10. 10.

    In particular the pseudo-unitary groups SU(p, q) satisfy this assumption. Moreover, groups possessing Dynkin diagrams with no symmetries may also qualify. Modification of this procedure to address other families of involutions will be taken up in a future work.

  11. 11.

    Note however, that all of the known uniqueness results for the Kerr metric are in the black hole regime, and cover only the outside of the event horizon (cf. [40] and references therein.) The same holds for “double-Kerr” non-existence results (e.g. [41, 42]).

  12. 12.

    The first two columns of Table 1 are excerpted directly from [38], except the fifth row (see [43]).

References

  1. P.D. Lax, Comm. Pure Appl. Math. 21, 467 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  2. P.G. Drazin, R.S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  3. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Comm. Pure Appl. Math. 27, 97 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  4. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)

    Book  MATH  Google Scholar 

  5. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Stud. Appl. Math. 53(4), 249 (1974)

    MATH  MathSciNet  Google Scholar 

  6. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Phys. Rev. Lett. 30, 1262 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  7. V.E. Zaharov, A.B. Šabat, Funktsional. Anal. i Prilozhen. 8(3), 43 (1974)

    Google Scholar 

  8. V.E. Zaharov, A.B. Šabat, Funktsional. Anal. i Prilozhen. 13(3), 13 (1979)

    MathSciNet  Google Scholar 

  9. V.E. Zaharov, L.A. Tahtadžjan, L.D. Faddeev, Dokl. Akad. Nauk SSSR 219, 1334 (1974)

    MathSciNet  Google Scholar 

  10. V.E. Zakharov, A.V. Mikhaĭlov, Sov. Phys. JETP 47, 1017 (1978)

    ADS  Google Scholar 

  11. K. Uhlenbeck, J. Differential Geom. 30(1), 1 (1989)

    MATH  MathSciNet  Google Scholar 

  12. F. Gürsey, Il Nuovo Cimento 16(2), 230 (1960)

    Article  MATH  Google Scholar 

  13. L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, English edn. (Springer, Berlin, 2007)

    Google Scholar 

  14. K. Schwarzschild, Gen. Relat. Gravit. 35(5), 951 (2003) [Translated from the original German article (Sitzungsber. Königl. Preussich. Akad. Wiss. Berlin Phys. Math. Kl. 1916, 189–196)]

    Google Scholar 

  15. R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. V.A. Belinskiĭ, V.E. Zakharov, Sov. Phys. JETP 48(6), 985 (1979)

    ADS  Google Scholar 

  17. V.A. Belinskiĭ, V.E. Zakharov, Sov. Phys. JETP 77(1), 3 (1979)

    Google Scholar 

  18. A. Papapetrou, Ann. Inst. H. Poincaré Phys. Théor. IV(2), 83 (1966)

    Google Scholar 

  19. G. Weinstein, Trans. Am. Math. Soc. 343(2), 899 (1994)

    MATH  Google Scholar 

  20. F.J. Ernst, Phys. Rev. 167, 1175 (1968)

    Article  ADS  Google Scholar 

  21. F.J. Ernst, Phys. Rev. 168, 1415 (1968)

    Article  ADS  Google Scholar 

  22. J. Shatah, W. Strauss, Physica D 99(2–3), 113 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. B. Carter, Gen. Relat. Gravit. 41, 2873 (2009)

    Article  MATH  ADS  Google Scholar 

  24. P.O. Mazur, Acta Phys. Polon. B 14(4), 219 (1983)

    MathSciNet  Google Scholar 

  25. S. Chandrasekhar, Selected Papers: The Mathematical Theory of Black Holes and of Colliding Plane Waves, vol. 6 (University of Chicago Press, Chicago, 1991)

    MATH  Google Scholar 

  26. C.W. Misner, Phys. Rev. D18, 4510 (1978)

    MathSciNet  ADS  Google Scholar 

  27. N. Sanchez, Phys. Rev. D 26, 2589 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  28. J.C. Wood, in Harmonic Maps and Integrable Systems (Vieweg, Braunschweig, 1994), pp. 29–55

    Google Scholar 

  29. S. Beheshti, S. Tahvildar-Zadeh, Integrability and Vesture for Harmonic Maps into Symmetric Spaces. Submitted, arXiv:1209.1383

    Google Scholar 

  30. G.A. Alekseev, Dokl. Akad. Nauk SSSR 256(4), 827 (1981)

    MathSciNet  Google Scholar 

  31. A. Eriş, M. Gürses, A. Karasu, J. Math. Phys. 25(5), 1489 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  32. M.A. Guest, From Quantum Cohomology to Integrable Systems (Oxford University Press, Oxford, 2008)

    MATH  Google Scholar 

  33. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (American Mathematical Society, Providence, 2001)

    MATH  Google Scholar 

  34. C.L. Terng, K. Uhlenbeck, Comm. Anal. Geom. 12(1–2), 345 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. C.L. Terng, in Fourth International Congress of Chinese Mathematicians (American Mathematical Society, Providence, 2010), pp. 367–381

    Google Scholar 

  36. G.A. Alekseev, Pis’ma Zh. Eksp. Teor. Fiz. 32(4), 301 (1980)

    Google Scholar 

  37. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein’s Field Equations, 2nd edn. (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  38. P. Breitenlohner, D. Maison, G. Gibbons, Comm. Math. Phys. 120(2), 295 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. A.A. Pomeransky, Phys. Rev. D 73(4), 044004 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  40. P.T. Chrusciel, J.L. Costa, M. Heusler, Living Rev. Relat. 15(7) (2012)

    Google Scholar 

  41. G. Neugebauer, J. Hennig, Gen. Relat. Gravit. 41(9), 2113 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. P.T. Chruściel, M. Eckstein, L. Nguyen, S.J. Szybka, Classical Quant. Grav. 28, 245017 (2011)

    Article  ADS  Google Scholar 

  43. P. Figueras, E. Jamsin, J.V. Rocha, A. Virmani, Classical Quant. Grav. 27, 135011 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  44. R. Emparan, H. Reall, Living Rev. Relat. 11(6), 1 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

SB gratefully acknowledges support from M. Kiessling and the NSF through grant DMS-0807705, during which the first part of this project was conceived; this material is also based upon work supported by the NSF under Grant #0932078000, while SB was in residence at the Mathematical Science Research Institute in Berkeley, California, during the 2013 Autumn semester. STZ thanks the Institute for Advanced Study for their hospitality and the stimulating environment provided during Spring 2011 while the authors were working on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabnam Beheshti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beheshti, S., Tahvildar-Zadeh, S. (2014). Dressing with Control: Using Integrability to Generate Desired Solutions to Einstein’s Equations. In: Cuevas-Maraver, J., Kevrekidis, P., Williams, F. (eds) The sine-Gordon Model and its Applications. Nonlinear Systems and Complexity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-06722-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06722-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06721-6

  • Online ISBN: 978-3-319-06722-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics