Skip to main content

Production of Nitric Oxide by Marine Unicellular Red Tide Phytoplankton, Chattonella marina

  • Chapter
  • First Online:
Nitric Oxide in Plants: Metabolism and Role in Stress Physiology

Abstract

In this chapter, we show several lines of evidence for the production of nitric oxide (NO) by unicellular red tide phytoplankton Chattonella marina under the normal growth conditions. Chemiluminescence (CL) assay suggested that C. marina produced NO in a cell-number-dependent manner, and the level of NO decreased by the addition of carboxy-PTIO, a specific NO scavenger. NO generation by C. marina was also confirmed by a spectrophotometric assay based on the measurement of the diazo-reaction positive substances (NOx) and by fluorometric assay using highly specific fluorescent indicator of NO. Furthermore, the NO level in C. marina was significantly decreased by l-NAME, a specific NO synthase (NOS) inhibitor. The addition of l-arginine increased the NO level, whereas NaNO2 had no effect. These results suggest that a NOS-like enzyme is mainly responsible for NO generation in C. marina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cueto M, Hernandez-Perera O, Martin R et al (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinusalbus. FEBS Lett 398:159–164

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–136

    Article  CAS  PubMed  Google Scholar 

  • Kawano I, Oda T, Ishimatsu A, Muramatsu T (1996) Inhibitory effect of the iron chelator Desferrioxamine (Desferal) on the generation of activated oxygen species by Chattonella marina. Mar Biol 126:765–771

    Article  CAS  Google Scholar 

  • Kikuchi K, Nagano T, Hayakawa H et al (1993) Detection of nitric oxide production from perfused organ by luminol-H2O2 system. Anal Chem 65:1794–1799

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Nakamura A, Okamoto T et al (1999) Toxic potential of the raphidophyte Olisthodiscus luteus: mediation by reactive oxygen species. J Plankton Res 21:1017–1027

    Article  CAS  Google Scholar 

  • Kojima H, Urano Y, Kikuchi K et al (1999) Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Ed Engl 38:3209–3212

    Article  CAS  PubMed  Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Mallick N, Rai LC, Mohn FH, Soeder CJ (1999) Studies on nitric oxide (NO) formation by the green alga Scenedesmus obliquus and the diazotrophic cyanobacterium Anabaena doliolum. Chemosphere 39:1601–1610

    Article  CAS  PubMed  Google Scholar 

  • Mallick N, Mohn FH, Rai LC, Soeder CJ (2000) Evidence for the non-involvement of nitric oxide synthase in nitric oxide production by the green alga Scenedesmus obliquus. J Plant Physiol 156:423–426

    Article  CAS  Google Scholar 

  • Meyer C, Lea US, Provan F et al (2005) Is nitrate reductase a major player in the plant NO (nitric oxide) game? Photosyn Res 83:181–189

    Article  CAS  PubMed  Google Scholar 

  • Ninnemann H, Maier J (1996) Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem Photobiol 64:393–398

    Article  CAS  PubMed  Google Scholar 

  • Oda T, Akaike T, Hamamoto T et al (1989) Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer conjugated SOD. Science 244:974–976

    Article  CAS  PubMed  Google Scholar 

  • Oda T, Akaike T, Sato K et al (1992a) Hydroxyl radical generation by red tide algae. Arch Biochem Biophys 294:38–43

    Article  CAS  PubMed  Google Scholar 

  • Oda T, Ishimatsu A, Shimada M et al (1992b) Oxygen-radical-mediated toxic effects of the red tide flagellate Chattonella marina on Vibrio alginolyticus. Mar Biol 112:505–509

    Article  CAS  Google Scholar 

  • Oda T, Nakamura A, Shikayama M et al (1997) Generation of reactive oxygen species by raphidophycean phytoplankton. Biosci Biotechnol Biochem 61:1658–1662

    Article  CAS  PubMed  Google Scholar 

  • Okaichi T (1989) Red tide problems in the Seto Inland Sea, Japan. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science, and toxicology. Elsevier, New York, pp 137–142

    Google Scholar 

  • Pfeiffer S, Leopold E, Hemmens B et al (1997) Interference of carboxy-PTIO with nitric oxide- and peroxynitrite-mediated reactions. Free Radic Biol Med 22:787–794

    Article  CAS  PubMed  Google Scholar 

  • Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297

    Article  CAS  PubMed  Google Scholar 

  • Sanzen I, Imanishi N, Takamatsu N et al (2001) Nitric oxide-mediated antitumor activity induced by the extract from Grifola frondosa (Maitake mushroom) in a macrophage cell line, RAW264.7. J Exp Clin Caner Res 20:591–597

    CAS  Google Scholar 

  • Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411:217–230

    Article  CAS  PubMed  Google Scholar 

  • Tischner R, Planchet E, Kaiser WM (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett 576:151–155

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Katou S, Yoshioka H et al (2004) Involvement of nitric oxide generation in hypersensitive cell death induce by elicitin in tobacco cell suspension culture. J Gen Plant Pathol 70:85–92

    Article  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  PubMed  Google Scholar 

  • Yang CZ, Albright LJ, Yousif AN (1995) Oxygen-radical-mediated effects of the toxic phytoplankter Heterosigma carterae on juvenile rainbow trout Oncorhynchus mykiss. Dis Aquat Org 23:101–108

    Article  CAS  Google Scholar 

  • Zhang C, Czymmek KJ, Shapiro AD (2003) Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response. Mol Plant Microbe Interact 16:962–972

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Oda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, D., Oda, T. (2014). Production of Nitric Oxide by Marine Unicellular Red Tide Phytoplankton, Chattonella marina . In: Khan, M., Mobin, M., Mohammad, F., Corpas, F. (eds) Nitric Oxide in Plants: Metabolism and Role in Stress Physiology. Springer, Cham. https://doi.org/10.1007/978-3-319-06710-0_5

Download citation

Publish with us

Policies and ethics