Generic IP Network Traffic Management from Measurement through Analyses to Simulation

  • Seferin Mirtchev
  • Constandinos X. Mavromoustakis
  • Rossitza Goleva
  • Kiril Kassev
  • George Mastorakis
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 3)

Abstract

The aim of this chapter is to present different approaches to network traffic management applicable to the IP, transport and application layers in IP, 3G, WiMAX and 4G technologies. The proposed technology for analysis is flexible enough to different types of traffic in opportunistic networks. We start with traffic measurements and obtain accurate data for detail network simulations and precise analysis. Then, we highlight the self-similar nature of the incoming traffic at network nodes. In our next analysis, we look at mapping the measured data with the Polya arrival process by Pareto and gamma distributed inter-arrival times. Polya, Pareto and gamma distributions have the capability to change shape and scale in a way to simulate different types of observed traffic. A proper analytical description of the end-recipient traffic flows and point process of self-similarity inputs are applied for a better user behavior specification. During an end-to-end simulation, more complex queuing models with priorities are proposed. The behavior of the system at its bounds is shown. We map the data from measurements and simulations with the application layer requirements, cross-layer Quality of Service (QoS) and Quality of Experience (QoE) parameters. This is done by traffic fractality analyses, codec-dependent resource reallocation and Fibonacci backward difference traffic moments analyses. All of them demonstrate special moments in the breakdown of the shaping effect. Finally, we express views on openresearch issues for offering optimization in the Internet traffic analyses.

Highlights

  • Polya Arrival Process, gamma and Pareto distributions.

  • Description and evaluation of Polya/D/1 model.

  • Numerical results of different peakedness of the traffic input flows.

  • Priority queuing and waiting time limits.

  • Distributed QoS and QoE management.

  • Applicability in Internet of Things and opportunistic networks.

Keywords

Self-similar traffic traffic measurements traffic simulations Polya arrivals Pareto and gamma distribution point process end-to-end queuing scheduling packet level QoS application level QoE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gibbens, R.J.: Traffic Characterization and Effective Bandwidths for Broadband Network Traces. In: Stochastic Networks, Theory and Applications, pp. 169–179. Oxford Science Pub. (1996)Google Scholar
  2. 2.
    Adami, D., Callegari, C., Giordano, S., et al.: Design and Performance Evaluation of Service Overlay Networks Topologies. JNW 6(4), 556–566 (2011)CrossRefGoogle Scholar
  3. 3.
    Matijasevic, M., Skorin-Kapov, L.: Design and Evaluation of a Multi-user Virtual Audio Chat. In: Future Generation Computer Systems (2003), doi:10.1016/S0167-739X(02)00149-8Google Scholar
  4. 4.
    Plissoneau, L., Biersack, E.: A Longitudinal View of HTTP Video Streaming Performance. In: MMSys 2012, ACM (2012)Google Scholar
  5. 5.
    Kleinrock, L.: Queueing Systems, vol. I and II. John Wiley and Sons (1976)Google Scholar
  6. 6.
    Koucheryavy, Y., Giambene, G., Staehle, D., Barcelo-Arroyo, F., Braun, T., et al. (eds.): Traffic and QoS Management in Wireless Multimedia Networks: COST 290 Final Report. LNEE, vol. 31. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Krendel, A.: Network Planning Aspects for 3G/4G Mobile Systems. Thesis, Tampere University (2005) ISBN 952-15-1436-1Google Scholar
  8. 8.
    Korn, G., Korn, T.: Mathematical Handbook for Scientists and Engineering. McGraw Hill (1968)Google Scholar
  9. 9.
    3GPP, TS 23.107 V6.4.0 - Quality of Service (QoS) Concept and Architecture (2006), http://www.3gpp.org/ftp/Specs/archive/23_series/23.107/23107-640.zip
  10. 10.
    Dimitrova, D.C., van den Berg, H., Heijenk, G., Litjens, R.: Flow Level Performance Comparison of Packet Scheduling Schemes for UMTS EUL. In: Harju, J., Heijenk, G., Langendörfer, P., Siris, V.A. (eds.) WWIC 2008. LNCS, vol. 5031, pp. 27–40. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Sleurs, K., Li, D., Lil, E., et al.: How Different Queuing Systems Affect the Discrete Representation of a Packet Stream. In: Clobecom 2008, New Orleans, USA (2008)Google Scholar
  12. 12.
    Lee, I., Fapojuwo, A.: Modeling Wireless TCP Connection Arrival Process. In: IEEE Clobecom, San Francisco, USA (2006)Google Scholar
  13. 13.
    Goleva, R., Mirtchev, S., Atamian, D., et al.: Experimental Analysis of QoS Provisioning for Video Traffic in Heterogeneous Networks. In: Joint ERCIM eMobility and MobiSense Workshop (with WWIC 2012) (June 2012)Google Scholar
  14. 14.
    Goleva, R., Atamian, D., Mirtchev, S., et al.: Traffic Sources Measurement and Analysis in UMTS. In: Proceedings of HP-MOSys 2012, Paphos, Cyprus (2012)Google Scholar
  15. 15.
    Ricciato, F.: Traffic Monitoring and Analyses for the Optimization of a 3G Network. IEEE Wireless Communications, 42–49 (December 2006)Google Scholar
  16. 16.
    Goleva, R., Mirtchev, S., Atamian, D., et al.: Traffic Measurements and Flow Analyses in 3G Network. In: ICEST 2011, Nic, Serbia, pp. 95–98 (2011)Google Scholar
  17. 17.
    Mirtchev, S., Goleva, R.: Evaluation of the Influence of the Input Flow Peakedness on the Polya/D/1 Queueing System. In: Telecom 2010, Sofia, pp. 110–117 (2010)Google Scholar
  18. 18.
    Goleva, R.I., Goleva, M., Atamian, D., et al.: Quality of Service System Approximation in IP Networks. Serdica Journal of Computing 2, 101–112 (2008) ISSN 1312-6555Google Scholar
  19. 19.
    Hilbert, M., López, P.: The World’s Technological Capacity to Store, Communicate, and Compute Information. Science 332(6025), 60–65 (2011)CrossRefGoogle Scholar
  20. 20.
    Willinger, W., Taqqu, M.S., Leland, E., et al.: Self-Similarity in High-Speed Packet Traffic: Analysis and Modeling of Ethernet Traffic Measurements. Statistical Science 10, 67–85 (1995)CrossRefMATHGoogle Scholar
  21. 21.
    Willinger, W., Taqqu, M.S., Sherman, R., et al.: Self-Similarity through High Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level. IEEE/ACM Transactions Networking 5, 71–86 (1997)CrossRefGoogle Scholar
  22. 22.
    Deane, J.H.B., Smythe, C., Jefferies, D.J.: Self-similarity in a Deterministic Model of Data Transfer. International Journal of Electronics 80(5), 677–691 (1996)CrossRefGoogle Scholar
  23. 23.
    Leland, W.E., Taqqu, M.S., Willinger, W., et al.: On the Self-Similar Nature of Ethernet Traffic (ext. ver.). IEEE/ACM Trans. Networking 2(1), 1–15 (1994)CrossRefGoogle Scholar
  24. 24.
    Sheluhin, O., Smolskiy, S., Osin, A.: Self-Similar Processes in Telecommunications (2007) ISBN: 978-0-470-01486-8Google Scholar
  25. 25.
    Kolmogorov, A.: Logical Basis for Information Theory and Probability Theory. IEEE Transactions on Information Theory 14(5), 662–664 (1968)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Callegati, F., Lakshman, S.T.: On Optical Burst Switching and Self-Similar Traffic. IEEE Communications Letters 4(3), 98–100 (2000)CrossRefGoogle Scholar
  27. 27.
    Mirtchev, S., Goleva, R.: Evaluation of Pareto/D/1/k Queue by Simulation. In: International Book Series “Information Science&Computing” No.1, Supplement to the International Journal Information Technologies & Knowledge, vol. 2, pp. 45–52 (2008)Google Scholar
  28. 28.
    Mirtchev, S., Goleva, R.: Discrete Time Single Server Queueing Model whit a Multimodal Packet Size Distribution. In: Atanasova, T. (ed.) Proceedings of a Conjoint Seminar “Modeling and Control of Information Processes”, Sofia, Bulgaria, pp. 83–101 (2009) ISBN: 978-954-9332-55-1Google Scholar
  29. 29.
    Mavromoustakis, C.X., Karatza, H.D.: Quality of Service Measures of Mobile Ad Hoc Wireless Network using Energy Consumption Mitigation with Asynchronous Inactivity Periods. Simulation: Transactions of the Society for Modeling and Simulation International 83, 107–122 (2008)CrossRefGoogle Scholar
  30. 30.
    Mavromoustakis, C.X., Zerfiridis, K.G.: On the Diversity Properties of Wireless Mobility with the User-centered Temporal Capacity Awareness for EC in Wireless Devices. In: Proceedings of the Sixth IEEE International Conference on Wireless and Mobile Communications, ICWMC 2010, Valencia, Spain, pp. 367–372 (2010)Google Scholar
  31. 31.
    Mavromoustakis, C.X., Dimitriou, C.D., Mastorakis, G.: Using Real-Time Backward Traffic Difference Estimation for Energy Conservation in Wireless Devices. In: Proceedings of the Second International Conference on Ambient Computing, Applications, Services and Technologies, AMBIENT, Barcelona, Spain, September 23-28 (2012)Google Scholar
  32. 32.
    Mavromoustakis, C.X., Karatza, H.: End-to-end Layered Asynchronous Scheduling Scheme for Energy Aware QoS Provision in Asymmetrical Wireless Devices. In: IEEE International EDOC Conference-Enterprise Computing Conference 2008, AQuSerM: Advances in Quality of Service Management Workshop, Munchen, Germany (2008)Google Scholar
  33. 33.
    Muscariello, L., Mellia, M., Meo, M., et al.: Markov Models of Internet Traffic and a New Hierarchical MMPP Model. Computer Communications Journal 28(16), 1835–1851 (2005)CrossRefGoogle Scholar
  34. 34.
    Dainotti, A., Pescape, A., Salvo, R., et al.: Internet Traffic Modeling by Means of Hidden Markov Models. Computer Networks (Elsevier) 52(14), 2645–2662 (2008)CrossRefMATHGoogle Scholar
  35. 35.
    Markovich, N., Krieger, U.: Statistical Analysis and Modeling of Skype VoIP Flows. Computer Communications (COMCOM) 31(suppl. 1), S11–S21 (2010)Google Scholar
  36. 36.
    Eittenberger, P., Krieger, U., Markovich, N.: Measurement and Analysis of Live-Streamed P2PTV Traffic. In: Czachyrski, T. (ed.) Performance Modelling and Evaluation of Heterogeneous Networks HET-NETs, pp. 195–212 (2010)Google Scholar
  37. 37.
    Xi, B., Chen, H., Cleveland, W., et al.: Statistical Analysis and Modeling of Internet VoIP Traffic for Network Engineering. Electron. J. Statist. 4, 58–116 (2010)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Molnar, S.: Fractal Analysis and Modeling of VoIP Traffic. Networks (2004)Google Scholar
  39. 39.
    Dainotti, A., Pescape, A., Ventre, G.: A Packet-level Model of Starcraft Traffic. In: Proc. of IEEE Hot-P2P, pp. 33–42 (2005)Google Scholar
  40. 40.
    Dainotti, A., Pescape, A., Ventre, G.: Worm Traffic Analysis and Characterization. In: IEEE International Conference on Communications, ICC 2007 (2007)Google Scholar
  41. 41.
    Ohri, R., Chlebus, E.: Measurement Based E-mail Traffic Characterization. In: Proc. of Int. Symp. on Performance Evaluation of Computer and Telecommunication Systems (2005)Google Scholar
  42. 42.
    Feng, W., Chang, F., Feng, W., et al.: A Traffic Characterization of Popular On-line Games. IEEE/ACM Transactions on Networking 13(3), 488–500 (2005)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Tammaro, D., Valenti, S., Rossi, D., et al.: Exploiting Packet Sampling Measurements for Traffic Characterization and Classification. International Journal of Network Management (2012)Google Scholar
  44. 44.
    Mirtchev, S., Goleva, R., Alexiev, V.: Evaluation of Single Server Queueing System with Polya Arrival Process and Constant Service Time. In: Proceedings of the International Conference on Information Technologies (InfoTech 2010), Bulgaria, pp. 203–212 (2010)Google Scholar
  45. 45.
    Ramos, H., Almorza, D., Garcia-Ramos, J.: On Characterizing the Polya Distribution. ESAIM: Probability and Statistics 6, 105–112 (2002)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Arya, V., Duffield, N., Veitch, D.: Temporal Delay Tomography. IEEE INFOCOM (2008)Google Scholar
  47. 47.
    Foh, C., Zukerman, M., Tantra, J.: A Markovian Framework for Performance Evaluation of IEEE 802.11. IEEE Transactions on Wireless Communications 6(4) (2007)Google Scholar
  48. 48.
    Abdrabou, A., Zhuang, W.: Service Time Approximation in IEEE 802.11 Single-Hop Ad Hoc Networks. IEEE Transactions on Wireless Communications 7(1) (2008)Google Scholar
  49. 49.
    Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP Traffic Using the Batch Markovian Arrival Process. Performance Evaluation Journal 54(2), 149–173 (2003)CrossRefGoogle Scholar
  50. 50.
    Dainotti, A., Pescape, A., Ventre, G.: A Packet-level Characterization of Network Traffic. In: Proc. of IEEE CAMAD, pp. 38–45 (2006)Google Scholar
  51. 51.
    Ibe, O.: Markov Processes for Stochastic Modeling. Academic Press (2008) ISBN-10: 0123744512Google Scholar
  52. 52.
    Baccelli, F., Machiraju, S., Veitch, D., et al.: The Role of PASTA in Network Measurement. IEEE/ACM Transactions on Networking 17(4) (2009)Google Scholar
  53. 53.
    Mandjes, M., Zuraniewski, P.: Tail Asymptotics of the M/G/inf Model. Stochastic Models 27(1), 77–93 (2011)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Mandjes, M., Zuraniewski, P.: M/G/inf Transience, and Its Applications to Overload Detection. Performance Evaluation 68(6), 507–527 (2011)CrossRefGoogle Scholar
  55. 55.
    Delbrouck, L.E.N.: A Unified Approximate Evaluation of Congestion Functions for Smooth and Peaky Traffics. IEEE Trans. on Commun. 29(2), 85–91 (1981)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Lowen, S.B.: Fractal Stochastic Processes. PhD thesis, Columbia University (1992)Google Scholar
  57. 57.
    Lowen, S.B., Teich, M.C.: Fractal Renewal Processes Generate 1=f noise. Physical Review E 47, 992–1001 (1993)CrossRefGoogle Scholar
  58. 58.
    Berger, J.M., Mandelbrot, B.B.: A New Model for the Clustering of Errors on Telephone Circuits. IBM Journal of Research Development 7, 224–236 (1963)CrossRefGoogle Scholar
  59. 59.
    Ryu, B.K., Lowen, S.B.: Point Process Approaches to the Modeling and Analysis of Self-Similar Traffic: Part I–Model construction. In: Proceedings of IEEE INFOCOM (1996)Google Scholar
  60. 60.
    Ryu, B.K.: Fractal Network Traffic: from Understanding to Implications. PhD thesis, Columbia University (1996)Google Scholar
  61. 61.
    Jin, X., Min, G., Wang, L.: A Comprehensive Analytical Model for Weighted Fair Queuing under Multi-Class Self-Similar Traffic. In: ICC 2009, pp. 1–5 (2009)Google Scholar
  62. 62.
    Goleva, R., Mirtchev, S.: Traffic Modeling in Disruption-Tolerant Networks. In: Annual Seminar of the PTT College, Modeling and Control of Information Processes, CTP, Sofia, pp. 6–20 (2010) ISSN: 1314-2771Google Scholar
  63. 63.
    Goleva, R., Mirtchev, S.: End-to-End Queue Dimensioning in IP Network. In: ICEST 2010, Ohrid, Macedonia, pp. 289–292 (2010)Google Scholar
  64. 64.
    Jin, X., Min, G.: Modeling Priority Queuing Systems with Multi-Class Self-Similar Network Traffic. In: ICC 2007, pp. 550–555 (2007)Google Scholar
  65. 65.
    Markovitch, N., Krieger, U.: The Estimation of Heavy-tailed Probability Density Functions, Their Mixtures and Quantiles. Elsevier, Computer Networks 40, 459–474 (2002)CrossRefGoogle Scholar
  66. 66.
    Hohn, N., Papagiannaki, K., Veitch, D.: Capturing Router Congestion and Delay. IEEE/ACM Transactions on Networking 17(3) (2009)Google Scholar
  67. 67.
    Loiseau, P., Gonçalves, P., Dewaele, G., et al.: Investigating Self-Similarity and Heavy-Tailed Distributions on a Large-Scale Experimental Facility. IEEE/ACM Transactions on Networking 18(4) (2010)Google Scholar
  68. 68.
    Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Charalambous, M.C., Mavromoustakis, C.X., Yassein, M.B.: A Resource Intensive Traffic-Aware Scheme for Cluster-based Energy Conservation in Wireless Devices. In: Proceedings of IEEE HPCC 2012 and WNM 2012, Liverpool, UK, June 25-27 (2012)Google Scholar
  70. 70.
    Rincón, D., Minerva, F., Sallent, S., et al.: Towards an Improved Characterization of Fractal Network Traffic. In: Third International Working Conference, Performance Modeling and Evaluation of Heterogeneous Networks, West Yorkshire, UK (2005)Google Scholar
  71. 71.
    Jin, X., Min, G.: Modelling and Analysis of Priority Queueing Systems with Multi-Class Self-Similar Network Traffic: A Novel and Efficient Queue-Decomposition Approach. IEEE Transactions on Communications 57(5), 1444–1452 (2009)CrossRefGoogle Scholar
  72. 72.
    Askar, S., Zervas, G., Hunter, D.K., et al.: Evaluation of Classified Cloning Scheme with Self-similar Traffic. In: CEEC, pp. 23–28 (2011)Google Scholar
  73. 73.
    Tsankov, B., Koleva, P., Kassev, K.: Scheduling Algorithms for Carrier Grade Voice over IEEE 802.16 Systems. In: Proceedings of MELECON, pp. 126–131 (2008)Google Scholar
  74. 74.
    Kassev, K., Mihov, Y., Kalaydzhieva, A., et al.: Call Admission Control Dimensioning for VoIP Traffic over Wireless Access Networks: From Network to Application-specific Perspective. IARIA International Journal on Advances in Networks and Services 3(3&4), 333–345 (2010)Google Scholar
  75. 75.
    Mihov, Y., Kassev, K., Tsankov, B.: WiMAX Cell Capacity Analysis for Voice Traffic under Consideration of Packet Duration. Elektrotechnica & Elektronica (E+E) Magazine 45(3-4), 15–20 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Seferin Mirtchev
    • 1
  • Constandinos X. Mavromoustakis
    • 2
  • Rossitza Goleva
    • 1
  • Kiril Kassev
    • 1
  • George Mastorakis
    • 3
  1. 1.Technical University of SofiaSofiaBulgaria
  2. 2.University of NicosiaNicosiaCyprus
  3. 3.Technological Educational Institute of CreteCreteGreece

Personalised recommendations