Measurements on Modern Wireless Communication Technologies and Estimation of Human Exposure

  • Dimitrios Stratakis
  • Andreas Miaoudakis
  • Evangelos Pallis
  • Traianos Yioultsis
  • Thomas Xenos
  • George Mastorakis
  • Constandinos X. Mavromoustakis
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 3)


The evolution of wireless networking technologies in recent years leads to a faster, safer and more efficient knowledge transfer with the demand of growing up the volume of information handled. The ultimate aim of improving the living standards of citizens, requires a new foundation to evaluate and improve the existing to the present relevant measurement techniques and possibly the introduction of new ones. Also, new wireless information propagation models have to be proposed in the future and the old models have to be evaluated and modified for their improvement. This will be achieved by conducting reliable measurements and experimental tests. A key element of such measurements is the estimation of the present uncertainty. In this context, the purpose of this chapter is to study how the electromagnetic fields generated by modern wireless communication base stations can be measured and evaluated in terms of exposure.


Channel power method electromagnetic field measurements electromagnetic field exposure reference levels spectrum analyser 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stewart, W.: Mobile phones and health. Independent Expert group on Mobile Phones, IEGMP (2000)Google Scholar
  2. 2.
    Documents of health protection Agency, Series B: Radiation, Chemical and Environmental Hazards, “Power frequency electromagnetic fields, melatonin and the risk of breast cancer”, Report of an independent Advisory Group on Non ionising radiation (2006)Google Scholar
  3. 3.
    WHO. Electromagnetic Fields and Public Health - Radiofrequency electromagnetic fields effect. Promemoria (183) (1998)Google Scholar
  4. 4.
    IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE Std C95.1-2005 (2006)Google Scholar
  5. 5.
    CENELEC, Human exposure to electromagnetic fields. High frequency (10 kHz to 300 GHz), ENV 50166-2, CENELEC (1995)Google Scholar
  6. 6.
    Council Recommendation: 1999/519/EC of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz). Official Journal L. 197 (1999)Google Scholar
  7. 7.
    Ahlbom, A., et al.: Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys. 74, 4 (1998)Google Scholar
  8. 8.
    Greek Legislation: Law 3431, About Electronic Communications and Other Orders, vol. A, act. 13 (2006)Google Scholar
  9. 9.
    Greek Legislation: Common Ministerial Decision-Protection measures for the exposure of the general public to all land based antenna stations, vol. B, act. 1105 (2000)Google Scholar
  10. 10.
    Sarkar, T., Ji, Z., Kim, K., Medouri, A., Salazar-Palma, M.: A survey of various propagation models for mobile communications. IEEE Antennas and Propagation Magazine 45(3), 51–80 (2003)CrossRefGoogle Scholar
  11. 11.
    Evans, B.G., Baughan, K.: Visions of 4G. Electronics and Communication Engineering Journal (2002)Google Scholar
  12. 12.
    Std 802.16eTM-2005 and IEEE Std 802.16TM-2004/Cor1-2005: IEEE Standard for Local and metropolitan area networks. Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. Amendment 2: Physical and Medium Access. Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1. IEEE, New York (2006)Google Scholar
  13. 13.
    Angrisani, L., Capriglione, D., Ferrigno, L., Miele, G.: Power Measurements in DVB-T Systems: New Proposal for Enhancing Reliability and Repeatability. IEEE Trans. Instrum. Meas. 57(10) (2008)Google Scholar
  14. 14.
    Bornkessel, C., Wuschek, M.: Exposure Measurements of Modern Digital Broadband Radio Services. In: German Microwave Conference, GeMiC 2006, Karlsruhe, Germany (2006)Google Scholar
  15. 15.
    Olivier, C., Martens, L.: Optimal Settings for Narrow-Band Signal Measurements Used for Exposure Assessment Around GSM Base Stations. IEEE Trans. Instrum. Meas. 54(1) (2005)Google Scholar
  16. 16.
    Eskerski, C., Braach, B.: UMTS measurements with the Selective Radiation Meter SRM-3000., Application Note AN_HF_1007, Narda Safety Test Solutions GmbH GmBH (2008)Google Scholar
  17. 17.
    Fayos-Fernández, J., Victoria-González, F., Martínez-González, A.M., Morote-Marco, A., Sánchez-Hernández, D.: Effect of spectrum analyzer filtering on electromagnetic dosimetry assessment for UMTS base stations. IEEE Trans. Instrum. Meas. 57(6), 1154–1165 (2008)CrossRefGoogle Scholar
  18. 18.
    Olivier, C., Martens, L.: Optimal Settings for Frequency-Selective Measurements Used for the Exposure Assessment Around UMTS Base Stations. IEEE Trans. Instrum. Meas. 56(5), 1901–1909 (2007)CrossRefGoogle Scholar
  19. 19.
    Betta, G., Capriglione, D., Miele, G., Rossi, L.: Reliable Measurements of Wi-FiTM Electromagnetic Pollution by Means of Traditional Spectrum Analyzers. In: Proceedings of IEEE International Instrumentation and Measurement Technology Conference, Victoria, Vancouver Island, Canada, pp. 206–211 (2008)Google Scholar
  20. 20.
    Agilent Technologies, Bluetooth® Measurement Fundamentals, Agilent Technologies Inc. Manufacturing Part Number: 5988-3760EN, USA (2006)Google Scholar
  21. 21.
    Agilent Application Note 1488, Ultra-Wideband Communication RF Measurements, Agilent Technologies, Inc., Manufacturing Part Number: 5989-0506EN, USA (2005)Google Scholar
  22. 22.
    Takada, J., Ishigami, S., Nakada, J., Nakagawa, E., Uchino, M., Yasui, T.: Measurement Techniques of Emissions from Ultra Wideband Devices. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E88-A(9), 2252–2263 (2005)CrossRefGoogle Scholar
  23. 23.
    Archambault, J., Surineni, S.: IEEE 802.11 Spectral Measurements Using Vector Signal Analyzers. RF Test and Measurement, pp. 38–49 (2004)Google Scholar
  24. 24.
    Briggs, M., Martinez, J., Bare, D.: Power measurements of OFDM signals. In: International Symposium on Electromagnetic Compatibility, EMC 2004, vol. 2, pp. 485–488 (2004)Google Scholar
  25. 25.
    Betta, G., et al.: The use of traditional spectrum analyzers to measure the electromagnetic pollution generated by WiMAX devices. In: Proceedings of XIX IMEKO World Congress, pp. 485–490 (2009)Google Scholar
  26. 26.
    Huynh, D., Nelson, B.: Best Practices for Making Accurate WiMAX Channel Power Measurements. Agilent Technologies Inc. (2008)Google Scholar
  27. 27.
    Joseph, W., et al.: Accurate assessment of electromagnetic exposure from WiMAX signals using a spectrum analyzer. IEEE Transactions on Instrumentation and Measurement 57(3), 518–521 (2008)CrossRefGoogle Scholar
  28. 28.
    Joseph, W., et al.: Accurate determination of the electromagnetic field due to WiMAX base station antennas. IEEE Transactions on Electromagnetic Compatibility 50(3), 730–735 (2008)CrossRefGoogle Scholar
  29. 29.
    Agilent Technologies, WiMAX Concepts and RF Measurements, Agilent Technologies Inc. Manufacturing Part Number: 5989-2027EN, USA (2005)Google Scholar
  30. 30.
    Bertocco, M., Sona, A.: On the Measurement of Power via a Superheterodyne Spectrum Analyzer. IEEE Trans. Instrum. Meas. 55(5), 1494–1501 (2006)CrossRefGoogle Scholar
  31. 31.
    Rohde & Schwarz Application Note 1EF41, Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP, Rohde & Schwarz (2001)Google Scholar
  32. 32.
    Agilent Technologies, Comparing Power Measurements on Digitally Modulated Signals, Agilent Technologies Inc., Manufacturing Part Number: 5968-2602E, USA (2000)Google Scholar
  33. 33.
    N7600B Signal Studio for 3GPP W-CDMA. Agilent Technologies Inc. (2011)Google Scholar
  34. 34.
    N7613A Signal Studio for 802.16-2004 (WiMAXTM). Agilent Technologies Inc. (2008)Google Scholar
  35. 35.
    Müllner, W., Neubauer, G., Haider, H.: Add3D, a new technique for precise power flux density measurements at mobile communications base stations. ARC Seibersdorfresearch GmbH (2000)Google Scholar
  36. 36.
    Stratakis, D., et al.: Automation in electromagnetic field measurements. In: Proceedings of the Annual Conference on Telecommunications & Multimedia (2006)Google Scholar
  37. 37.
    Agilent Application Note 1303, Spectrum Analyzer Measurements and Noise. Agilent Technologies Inc. Manufacturing Part Number: 5966-4008E, USA (2003)Google Scholar
  38. 38.
    Stratakis, D., et al.: Overall Uncertainty Estimation in Multiple Narrow-Band in Situ Electromagnetic Field Measurements. IEEE Transactions on Instrumentation and Measurement 58(8), 2767–2779 (2009)CrossRefGoogle Scholar
  39. 39.
    Stratakis, D., et al.: On the spatial averaging of multiple narrowband electromagnetic field measurements: Methods and uncertainty estimation. IEEE Transactions on Instrumentation and Measurement 59(6), 1520–1536 (2010)CrossRefGoogle Scholar
  40. 40.
    Gum, I.S.O.: Guide to the expression of uncertainty in measurement, 1st edn. (1995)Google Scholar
  41. 41.
    Taylor, B.N., Kuyatt, C.E.: NIST Technical Note 1297. Guidelines for evaluating and expressing the uncertainty of NIST measurement results (1994)Google Scholar
  42. 42.
    UKAS: M3003, The Expression of Uncertainty and Confidence in Measurement, 2nd edn. UKAS (2007)Google Scholar
  43. 43.
    EURACHEM/CITAC Guide CG4: Quantifying uncertainty in analytical measurement, 2nd edn. (2000)Google Scholar
  44. 44.
    ECC Recommendation (02)04 (revised Bratislava 2003, Helsinki 2007), Measuring Non-Ionising Electromagnetic Radiation (9 kHz - 300 GHz), Edition 060207, Electronic Communications Committee, ECC (2007)Google Scholar
  45. 45.
    CENELEC prEN 50492, Basic standard for the in-situ measurement of electromagnetic field strength related to human exposure in the vicinity of base stations, CENELEC (2006)Google Scholar
  46. 46.
    Mastorakis, G., Kormentzas, G., Pallis, E.: A fusion IP/DVB networking environment for providing always-on connectivity and triple-play services to urban and rural areas. IEEE Network Magazine 21(2), 21–27 (2007)CrossRefGoogle Scholar
  47. 47.
    Mastorakis, G., Pallis, E., Kormentzas, G.: A DVB/IP QoS aware backhaul networking environment. Wireless Personal Communications 52(3), 637–649 (2010)CrossRefGoogle Scholar
  48. 48.
    Pallis, E., Mantakas, C., Mastorakis, G., Kourtis, A., Zacharopoulos, V.: Digital Switchover in UHF: the ATHENA concept for broadband access. European Transactions on Telecommunications 17(2), 175–182 (2006)CrossRefGoogle Scholar
  49. 49.
    Mastorakis, G., Pallis, E., Mantakas, C., Kormentzas, G., Skianis, C.: Exploiting digital switchover for broadband services access in rural areas. Journal of Communications 1(6), 45–50 (2006)CrossRefGoogle Scholar
  50. 50.
    Mastorakis, G., Markakis, E., Sideris, A., Pallis, E., Zacharopoulos, V.: Experimental Infrastructures for IP/DVB Convergence: an Actual Substantiation for Triple Play Services Provision at Remote Areas. In: IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2007 (2007)Google Scholar
  51. 51.
    Bourdena, A., Pallis, E., Kormentzas, G., Mastorakis, G.: A prototype cognitive radio architecture for TVWS exploitation under the real time secondary spectrum market policy. Paper published at the Special Issue on Cognitive Radio for LTE Advanced & Beyond. Physical Communication. Elsevier (2013),
  52. 52.
    Bourdena, A., Pallis, E., Kormentzas, G., Mastorakis, G.: Opportunistic TV White Spaces Exploitation through Efficient Radio Resource Management Algorithms in Cognitive Radio Networks. Paper Published at the Transactions on Emerging Telecommunications Technologies (ETT). Wiley (2013)Google Scholar
  53. 53.
    Bourdena, A., Pallis, E., Kormentzas, G., Skianis, C., Mastorakis, G.: Real-Time TVWS Trading Based on a Centralised CR Network Architecture. Paper Presented at the IEEE Globecom2011, IEEE International Workshop on Recent Advances in Cognitive Communications and Networking, Texas, Houston, USA, December 05-09, pp. 964–969 (2011)Google Scholar
  54. 54.
    Bourdena, A., Pallis, E., Kormentzas, G., Mastorakis, G.: A centralised broker-based CR network architecture for TVWS exploitation under the RTSSM policy. Paper Presented at the 2nd IEEE Workshop on Convergence among Heterogeneous Wireless Systems in Future Internet (CONWIRE 2012), IEEE ICC 2012, Ottawa, Canada, June 10-15, pp. 5685–5689 (2012)Google Scholar
  55. 55.
    Bourdena, A., Mastorakis, G., Pallis, E., Karditsis, E., Kormentzas, G.: A radio resource management framework for TVWS exploitation under the RTSSM policy. Paper Presented at the International Conference on Telecommunication & Multimedia, IEEE TEMU 2012, Heraklion, Crete, Greece, July 30-August 1, pp. 1–6 (2012)Google Scholar
  56. 56.
    Bourdena, A., Mastorakis, G., Pallis, E., Arvanitis, A., Kormentzas, G.: A Dynamic Spectrum Management Framework for Efficient TVWS Exploitation. Paper Presented at the 17th IEEE International Workshop on Computer-Aided Modeling Analysis and Design of Communication Links and Networks, IEEE CAMAD 2012, Barcelona, Spain, September 17-19, pp. 51–55 (2012)Google Scholar
  57. 57.
    Bourdena, A., Pallis, E., Kormentzas, G., Mastorakis, G.: A radio resource management framework for TVWS exploitation under an auction-based approach. Paper presented at the 8th International Conference on Network and Service Management, IEEE CNSM 2012, The Mirage, Las Vegas, USA, October 22-26, pp. 204–208 (2012)Google Scholar
  58. 58.
    Bourdena, A., Mastorakis, G., Pallis, E., Mavromoustakis, C.X., Kormentzas, G., Karditsis, E.: A Radio Resource Management Framework for Opportunistic TVWS Access. Paper Presented at the1st ACM Workshop on High Performance Mobile Opportunistic Systems, IEEE ACM HP-MOSys 2012, Paphos, Cyprus, October 21-25, pp. 33–38 (2012)Google Scholar
  59. 59.
    Bourdena, A., Pallis, E., Kormentzas, G., Skianis, C., Mastorakis, G.: QoS provisioning and policy management in a broker-based CR network architecture. Paper Presented at the IEEE Globecom 2012, IEEE International Workshop on Recent Advances in Cognitive Communications and Networking, Anaheim, San Francisco, USA, December 3-7, pp. 1841–1846 (2012)Google Scholar
  60. 60.
    Bourdena, A., Pallis, E., Kormentzas, G., Mastorakis, G.: Radio Resource Management Algorithms for Efficient QoS Provisioning over Cognitive Radio Networks. Paper Presented at the IEEE ICC2013, IEEE International Conference on Communications, Budapest, Hungary, June 9-13 (2013)Google Scholar
  61. 61.
    Bourdena, A., Makris, P., Skoutas, D., Skianis, C., Kormentzas, G., Pallis, E., Mastorakis, G.: Joint Radio Resource Management in Cognitive Networks: TV White Spaces Exploitation Paradigm. In: Lagkas, T., Sarigiannidis, P., Louta, M., Chatzimisios, P. (eds.) Paper Published at the in the book Evolution of Cognitive Networks and Self-Adaptive Communication Systems (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dimitrios Stratakis
    • 1
  • Andreas Miaoudakis
    • 1
  • Evangelos Pallis
    • 1
  • Traianos Yioultsis
    • 2
  • Thomas Xenos
    • 2
  • George Mastorakis
    • 3
  • Constandinos X. Mavromoustakis
    • 4
  1. 1.Department of Informatics EngineeringTechnological Educational Institute of CreteCreteGreece
  2. 2.Department of Electrical and Computer EngineeringAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Department of Business AdministrationTechnological Educational Institute of CreteCreteGreece
  4. 4.Department of Computer ScienceUniversity of NicosiaEngomi, NicosiaCyprus

Personalised recommendations