Unified Platform for M2M Virtual Object Interoperability

  • Nikolaos Zotos
  • Charalampos Stergiopoulos
  • Konstantinos Anastasopoulos
  • Georgios Bogdos
  • Evangellos Pallis
  • Charalampos Skianis
  • George Mastorakis
  • Constandinos X. Mavromoustakis
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 3)


Sensor networks contribute to the interconnection of a large variety of devices (i.e. transducers, sensors, actuators) thus, enable monitoring and control processes. While new wireless technologies are emerging, a major issue of interoperability has to be addressed in terms of data communications, controlling and interfacing in order to confront the heterogeneity of networks and connected devices and enable end-to-end communication, as well as efficient resource management. A proposed solution to this problem is the provision of a unified service access architecture, which will support common interfaces for data communications, as well as device management and control that will be based on open standards. The concept of object virtualization and IP based networking is introduced for resolving interoperability issues. In this context, the architecture can serve applications that are in line with Machine-to-Machine (M2M) and Internet-of-Things (IoT) concepts.


Wireless sensor networks information management object virtualization Low power IP networking IEEE 1451.x Machine-to-Machine Internet-of-Things 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)CrossRefGoogle Scholar
  2. 2.
    O’Grady, M.J., Murdoch, O., Kroon, B., Lillis, D., Carr, D., Collier, R.W., O’Hare, G.M.: Pervasive Sensing: Addressing the Heterogeneity Problem. Journal of Physics: Conference Series 450(1), 012044 (2013)Google Scholar
  3. 3.
    Yongping, X., Yun, Z., Zhijia, Y.: A Middleware Framework Based on the IEEE 1451 Standards. In: International Conference on Wireless Communications, Networking and Mobile Computing, WiCom 2007, pp. 3119–3122 (2007)Google Scholar
  4. 4.
    Watson, D.S., Piette, M.A., Sezgen, O., Motegi, N., Ten Hope, L.: Machine to machine (M2M) technology in demand responsive commercial buildings (2004)Google Scholar
  5. 5.
    Fadlullah, Z.M., Fouda, M.M., Kato, N., Takeuchi, A., Iwasaki, N., Nozaki, Y.: Toward intelligent machine-to-machine communications in smart grid. IEEE Communications Magazine 49(4), 60–65 (2011)CrossRefGoogle Scholar
  6. 6.
    Cackovic, V., Popovic, Z.: Cloud based service for M2M communication. In: 2012 IX International Symposium on Telecommunications (BIHTEL), pp. 1–6. IEEE (2012)Google Scholar
  7. 7.
    Potter, C.H., Hancke, G.P., Silva, B.J.: Machine-to-Machine: Possible applications in industrial networks. In: 2013 IEEE International Conference on Industrial Technology (ICIT), pp. 1321–1326 (2013)Google Scholar
  8. 8.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer Networks 54(15), 2787–2805 (2010)CrossRefMATHGoogle Scholar
  9. 9.
    Ashton, K.: That ‘Internet of Things’ Thing. RFiD Journal 22, 97–114 (2009)Google Scholar
  10. 10.
    Johnson, M., Healy, M., van de Ven, P., Hayes, M.J., Nelson, J., Newe, T., Lewis, E.: A comparative review of wireless sensor network mote technologies. In: 2009 IEEE Sensors, pp. 1439–1442 (2009)Google Scholar
  11. 11.
    Rouached, M., Baccar, S., Abid, M.: Services (SERVICES). In: 2012 IEEE Eighth World Congress, pp. 65–72 (2012)Google Scholar
  12. 12.
    Broring, A., Foerster, T., Jirka, S.: Interaction patterns for bridging the gap between sensor networks and the sensor web. In: 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 732–737 (2010)Google Scholar
  13. 13.
    Stevenson, G., Knox, S., Dobson, S., Nixon, P.: Proceedings of the 1st Workshop on Context, Information and Ontologies CIAO 2009, pp. 91–98. ACM, New York (2009)Google Scholar
  14. 14.
    Yang, D., Liu, F., Liang, Y.: A Survey of the Internet of Things. In: ICEBI 2010, Advances in Intelligent Systems Research (2010) ISBN, 978, 90-78677Google Scholar
  15. 15.
    Bandyopadhyay, S., Sengupta, M., Maiti, S., Dutta, S.: Role of middleware for Internet of things: a study. International Journal of Computer Science & Engineering Survey (IJCSES) 2 (2011)Google Scholar
  16. 16.
    Terziyan, V., Kaykova, O., Zhovtobryukh, D.: Ubi-Road: Semantic Middleware for Cooperative Traffic Systems and Services. International Journal on Advances in Intelligent Systems 3(3 and 4), 286–302 (2010)Google Scholar
  17. 17.
    Higuera, J., Polo, J.: Understanding the IEEE 1451 standard in 6loWPAN sensor networks. In: 2010 IEEE Sensors Applications Symposium (SAS), pp. 189–193 (2010)Google Scholar
  18. 18.
    Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 packets over IEEE 802.15. 4 networks. Internet proposed standard RFC, 4944 (2007)Google Scholar
  19. 19.
    Neilson, C., Donaldson, S.: IPv6 Maintenance Working Group K. Lynn, Ed. Internet-Draft Consultant Intended status: Standards Track J. Martocci Expires: Johnson Controls (September 13, 2012)Google Scholar
  20. 20.
    Dunkels, A., Gronvall, B., Voigt, T.: Contiki-a lightweight and flexible operating system for tiny networked sensors. In: 29th Annual IEEE International Conference on Local Computer Networks, pp. 455–462 (2000)Google Scholar
  21. 21.
    Song, E.Y., Lee, K.: Understanding IEEE 1451-Networked smart transducer interface standard-What is a smart transducer? IEEE Instrumentation & Measurement Magazine 11(2), 11–17 (2008)CrossRefGoogle Scholar
  22. 22.
    Callaway, E., Gorday, P., Hester, L., Gutierrez, J.A., Naeve, M., Heile, B., Bahl, V.: Home networking with IEEE 802.15. 4: a developing standard for low-rate wireless personal area networks. IEEE Communications Magazine 40(8), 70–77 (2002)CrossRefGoogle Scholar
  23. 23.
    Babu, R., Abraham, G., Borasia, K.: A Review On Securing Distributed Systems Using Symmetric Key Cryptography, arXiv preprint arXiv:1303.0351 (2013)Google Scholar
  24. 24.
    Ferguson, N., Schneier, B.: A cryptographic evaluation of IPsec. Counterpane Internet Security, Inc., 3031 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nikolaos Zotos
    • 1
    • 2
  • Charalampos Stergiopoulos
    • 2
  • Konstantinos Anastasopoulos
    • 2
  • Georgios Bogdos
    • 2
  • Evangellos Pallis
    • 3
  • Charalampos Skianis
    • 1
  • George Mastorakis
    • 4
  • Constandinos X. Mavromoustakis
    • 5
  1. 1.Department of Information & Communications Systems EngineeringUniversity of the AegeanSamosGreece
  2. 2.Research DepartmentFuture Intelligence Ltd.AthensGreece
  3. 3.Department of Informatics EngineeringTechnological Educational Institute of CreteCreteGreece
  4. 4.Department of Business AdministrationTechnological Educational Institute of CreteCreteGreece
  5. 5.Department of Computer ScienceUniversity of NicosiaEngomi, NicosiaCyprus

Personalised recommendations