Energy and Resource Consumption Evaluation of Mobile Cognitive Radio Devices

  • George Mastorakis
  • Spyros Panagiotakis
  • Kostas Kapetanakis
  • Giorgos Dagalakis
  • Constandinos X. Mavromoustakis
  • Athina Bourdena
  • Evangelos Pallis
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 3)


This chapter proposes a Cognitive Radio network architecture that enables for the efficient operation of mobile devices over TV White Spaces. The proposed network architecture comprises of a Geo-location database and a spectrum broker that coordinates TV White Spaces access, by a number of 4G secondary communication systems, competing/requesting for the available radio spectrum. Furthermore, it introduces an innovative methodology for evaluation of energy and resource consumption in mobile cognitive devices that does not require any external metering device but exploits the advanced software and hardware features of modern smart phones to this end. In particular, the various APIs provided, by such operating systems for access to their functionality can be used for adequately auditing and reporting resource consumption on such mobile platforms. More specifically, we evaluate energy consumption and CPU utilisation in various communication scenarios via a number of experimental tests, carried out under controlled conditions. Network connectivity, calling and multimedia playback are some of the scenarios that are evaluated and presented here.


Cognitive Radio Networks Energy Consumption Evaluation Resource Consumption Mobile Devices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    First Report and Order, Federal Communication Commission Std. (2010),
  2. 2.
    The Economics of Spectrum management: A Review, Australian Communication and Media Authority, ACMA (2007)Google Scholar
  3. 3.
    OFCOM, Digital Dividend Review: geographic interleaved awards 470 - 550 MHz and 630 - 790 MHz – Consultation on detailed award design (June 2008)Google Scholar
  4. 4.
  5. 5.
    Unlicensed Operation in the TV Broadcast Bands, Final Rules,
  6. 6.
    Bourdena, A., Pallis, E., Kormentzas, G., Skianis, C., Mastorakis, G.: Real-Time TVWS Trading Based on a Centralised CR Network Architecture. In: Proc. IEEE Globecom 2011, Texas, Houston, USA, pp. 964–969 (2011)Google Scholar
  7. 7.
    Akyildiz, F., Lee, W.Y., Vuran, M.C., Mohanty, S.: A Survey on Spectrum Management in Cognitive Radio Networks. IEEE Coms. Mag. 46, 40–48 (2008)CrossRefGoogle Scholar
  8. 8.
    Cavalcanti, F., Andersson, S.: Optimizing Wireless Communications Systems. Springer (2009)Google Scholar
  9. 9.
    Bourdena, A., Pallis, E., Kormentzas, G., Mastorakis, G.: A prototype cognitive radio architecture for TVWS exploitation under the real time secondary spectrum market policy. Physical Communication (2013),
  10. 10.
    Bourdena, A., Pallis, E., Kormentzas, G., Mastorakis, G.: A centralised broker-based CR network architecture for TVWS exploitation under the RTSSM policy. In: Proc. IEEE ICC 2012, Ottawa, Canada, June 10-15, pp. 7243–7247 (2012)Google Scholar
  11. 11.
    Bourdena, A., Pallis, E., Kormentzas, G., Skianis, H., Mastorakis, G.: QoS provisioning and policy management in a broker-based CR network architecture. In: Proc. IEEE Globecom 2012, Anaheim, California, USA, December 03-07 (2012)Google Scholar
  12. 12.
    Bourdena, A., Pallis, E., Kormentzas, G., Mastorakis, G.: Radio Resource Management Algorithms for Efficient QoS Provisioning over Cognitive Radio Networks. In: Proc. IEEE ICC 2013, Budapest, Hungary, June 09-13 (2013)Google Scholar
  13. 13.
    Wyglynski, A.M., Nekovee, M., Hou, T.: Cognitive Radio Communications and Networks: Principles and Practice. Academic Press (2009)Google Scholar
  14. 14.
    Bourdena, A., Pallis, E., Kormentzas, G., Mastorakis, G.: Efficient radio resource management algorithms in opportunistic cognitive radio networks. Transactions on Emerging Telecommunications Technologies (2013)Google Scholar
  15. 15.
    Hossain, E., Niyato, D., Han, Z.: Dynamic spectrum access and management in cognitive radio networks, 1st edn. Cambridge University Press (2009)Google Scholar
  16. 16.
    Dalvik Virtual Machine, (visited on August 12, 2013)
  17. 17.
    Kapetanakis, K., Panagiotakis, S.: Efficient Energy Consumption’s Measurement on Android Devices. In: Proceedings of the 2nd International Workshop on Mobile Device Software Development and Web Development, MDSD 2012 (in Conjunction with the 16th Panhellenic Conference on Informatics, PCI 2012), Piraeus, Greece, October 5-7 (2012)Google Scholar
  18. 18.
    The kernel documentation as visited on August 14, 2013,
  19. 19.
    Zhang, L., Tiwana, B., Qian, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accurate online power estimation and automatic battery behavior based power model generation for smartphones. In: Proceeding of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS 2010), Scottsdale, AZ, USA, October 24-29 (2010)Google Scholar
  20. 20.
    Malamos, A.G., Malamas, E.N., Varvarigou, T.A., Ahuja, S.R.: A Model For Availability of Quality of Service (QoS) in Distributed Multimedia Systems. Multimedia Tools and Applications Journal 16(3), 207–230 (2002)CrossRefMATHGoogle Scholar
  21. 21.
    Malamos, A.G., Malamas, E.N., Varvarigou, T.A.: On The Definition, Modeling, And Implementation of Quality of Service (QoS) in Distributed Multimedia Systems. In: IEEE ISCC 1999, Egypt (July 1999)Google Scholar
  22. 22.
    Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In: Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference, Boston, MA, June 23-25 (2010)Google Scholar
  23. 23.
    Paul, K., Kundu, T.K.: Android on Mobile Devices: An Energy Perspective. In: IEEE International Conference on Computer and Information Technology (2010)Google Scholar
  24. 24.
    Rynkiewicz, R.: Discharge and charge modeling of lead acid batteries. In: Proc. Appl. Power Electron. Conf. Expo (1999)Google Scholar
  25. 25.
    Mittal, R., Kansal, A., Chandra, R.: Empowering developers to estimate app energy consumption. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, August 22-26 (2012), doi:10.1145/2348543.2348583Google Scholar
  26. 26.
    Ferreira, D., Dey, A.K., Kostakos, V.: Understanding Human-Smartphone Concerns: A Study of Battery Life. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 19–33. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Shye, A., Scholbrock, B., Memik, G.: Into the wild: studying real user activity patterns to guide power optimizations for mobile architectures. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2009), New York, NY, USA, December 12-16 (2009)Google Scholar
  28. 28.
    Kassinen, O., Harjula, E., Korhonen, J., Ylianttila, M.: Battery life of mobile peers with UMTS and WLAN in a Kademlia-based P2P overlay. In: Proceedings of the 20th Personal, Indoor and Mobile Radio Communications Symposium (PIMRC 2009), Tokyo, Japan, September 13-16 (2009)Google Scholar
  29. 29.
    Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy Consumption in Mobile Phones: A Measurement Study and Implications for Network Applications. In: Proceeding of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, IMC 2009, Chicago, Illinois, USA, November 4-6, pp. 280–293 (2009)Google Scholar
  30. 30.
    Korhonen, K.: Predicting mobile device battery life. MSc. Thesis, Aalto University, Helsinki, Finland (2011)Google Scholar
  31. 31.
    Shen, B., Tan, W.-T., Huve, F.: Dynamic Video Transcoding in Mobile Environments. IEEE Multimedia 15(1), 42–51 (2008)CrossRefGoogle Scholar
  32. 32.
    Šoštarić, D., Vinko, D., Rimac-Drlje, S.: Power Consumption of Video Decoding on Mobile Devices. In: Proceedings of the 52th International Symposium (ELMAR 2010), Zadar, Croatia, September 15-17, 2010, pp. 81–84 (2010)Google Scholar
  33. 33.
    Lin, C.H., Liu, J.C., Liao, C.W.: Energy analysis of multimedia video decoding on mobile handheld devices. Elsevier Computer Standards & Interfaces 32(1-2), 10–17 (2010)CrossRefGoogle Scholar
  34. 34.
    Mavromoustakis, C.X., Dimitriou, C.D., Mastorakis, G.: On the Real-Time Evaluation of Two-Level BTD Scheme for Energy Conservation in the Presence of Delay Sensitive Transmissions and Intermittent Connectivity in Wireless Devices. International Journal on Advances in Networks and Services 6(3 and 4), 148–162 (2013)Google Scholar
  35. 35.
    Mastorakis, G., Mavromoustakis, C.X., Bourdena, A., Pallis, E., Sismanidis, G.: Optimizing radio resource management in energy-efficient cognitive radio networks. In: Proceedings of the 2nd ACM Workshop on High Performance Mobile Opportunistic Systems, pp. 75–82. ACM (2013)Google Scholar
  36. 36.
    Mastorakis, G., Mavromoustakis, C.X., Bourdena, A., Pallis, E.: An energy-efficient routing scheme using Backward Traffic Difference estimation in cognitive radio networks. In: IEEE 14th International Symposium and Workshops on World of Wireless, Mobile and Multimedia Networks, WoWMoM 2013 (2013)Google Scholar
  37. 37.
    Mastorakis, G., Mavromoustakis, C.X., Bourdena, A., Kormentzas, G., Pallis, E.: Maximizing energy conservation in a centralized cognitive radio network architecture. In: 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD 2013), pp. 175–179 (2013)Google Scholar
  38. 38.
    Mastorakis, G., Bourdena, A., Mavromoustakis, C.X., Pallis, E., Kormentzas, G.: An energy-efficient routing protocol for ad-hoc cognitive radio networks. In: Future Network and Mobile Summit (FutureNetworkSummit 2013) (2013)Google Scholar
  39. 39.
    Mavromoustakis, C.X., Dimitriou, C., Mastorakis, G., Pallis, E.: Real-Time Performance Evaluation of F-BTD scheme for optimized QoS Energy Conservation in Wireless Devices. In: Proc. IEEE Globecom 2013, 2nd IEEE Workshop on Quality of Experience for Multimedia Communications (QoEMC 2013), Atlanta, GA, USA, December 09-13 (2013)Google Scholar
  40. 40.
    Dimitriou, C., Mavromoustakis, C.X., Mastorakis, G., Pallis, E.: On the performance response of delay-bounded energy-aware bandwidth allocation scheme in wireless networks. Paper Presented at the IEEE ICC 2013, Budapest, Hungary, June 9-13 (2013)Google Scholar
  41. 41.
    Bourdena, A., Mavromoustakis, C.X., Kormentzas, G., Pallis, E., Mastorakis, G., Yassein, M.B.: A Resource Intensive Traffic-Aware Scheme using Energy-efficient Routing in Cognitive Radio Networks. Future Generation Computer Systems (2014),
  42. 42.
    Mavromoustakis, C.X., Mastorakis, G., Bourdena, A., Pallis, E.: Energy Efficient Resource Sharing using a Traffic-oriented Routing Scheme for Cognitive Radio Networks. IET Networks Journal (2014), doi:10.1049/iet-net.2013.0132Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • George Mastorakis
    • 1
  • Spyros Panagiotakis
    • 2
  • Kostas Kapetanakis
    • 2
  • Giorgos Dagalakis
    • 2
  • Constandinos X. Mavromoustakis
    • 3
  • Athina Bourdena
    • 2
  • Evangelos Pallis
    • 2
  1. 1.Department of Business AdministrationTechnological Educational Institute of CreteCreteGreece
  2. 2.Department of Informatics EngineeringTechnological Educational Institute of CreteCreteGreece
  3. 3.Department of Computer ScienceUniversity of NicosiaEngomi, NicosiaCyprus

Personalised recommendations