Energy-Efficient Routing in Cognitive Radio Networks

  • George Mastorakis
  • Constandinos X. Mavromoustakis
  • Athina Bourdena
  • Evangelos Pallis
  • Giorgio Sismanidis
  • Dimitrios Stratakis
  • Stelios Papadakis
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 3)


This chapter proposes a novel routing protocol enriched with a capacity-aware scheme that enables energy conservation and efficient data flow coordination among communication nodes with heterogeneous spectrum availability in distributed cognitive radio networks. Efficient routing protocol operation, as a matter of maximum energy conservation, maximum-possible routing paths establishments and minimum delays is obtained by utilizing both a signaling mechanism and an energy efficient scheme that were implemented based on a simulation scenario. This simulation scenario includes a number of secondary communication nodes, operating over television white spaces (TVWS) under the “spectrum of commons” regulation regime. The validity of the proposed energy efficient routing protocol is verified, by conducting experimental simulations and obtaining performance evaluation results. Simulation results validated routing protocol efficiency for minimizing energy consumption, maximizing resources exchange between secondary communication nodes and minimizing routing delays.


Cognitive Radio Networks Routing Protocols TV White Spaces Energy Conservation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I.F., Lee, W.Y., Vuran, M.C., Mohanty, S.: NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Computer Networks 50, 2127–2159 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Bourdena, A., Pallis, E., Kormentzas, G., Mastorakis, G.: A prototype cognitive radio architecture for TVWS exploitation under the real time secondary spectrum market policy. Physical Communications, Elsevier (2013),
  3. 3.
    Bourdena, A., Pallis, E., Kormentzas, G., Skianis, C., Mastorakis, G.: Real-Time TVWS Trading Based on a Centralised CR Network Architecture. In: IEEE International Workshop on Recent Advances in Cognitive Communications and Networking, IEEE Globecom2011, pp. 994–999. IEEE Press, Texas (2011)Google Scholar
  4. 4.
    Bourdena, A., Pallis, E., Kormentzas, G., Mastorakis, G.: A radio resource management framework for TVWS exploitation under an auction-based approach. In: 8th IEEE International Conference on Network and Service Management (IEEE CNSM2012), pp. 204–208. IEEE Press, Las Vegas (2012)Google Scholar
  5. 5.
    Bourdena, A., Pallis, E., Kormentzas, G., Skianis, H., Mastorakis, G.: QoS provisioning and policy management in a broker-based CR network architecture. In: IEEE Globecom 2012, Anaheim, California, USA (2012)Google Scholar
  6. 6.
    Hossain, E., Niyato, D., Han, Z.: Dynamic spectrum access and management in cognitive radio networks. Cambridge University Press (2009)Google Scholar
  7. 7.
    Mavromoustakis, C.X.: Using Backward Traffic Difference Estimation for Efficient Energy Saving Schedules in Wireless Device. IEEE CommSoft E-Letters 1, 1–6 (2012)Google Scholar
  8. 8.
    Charalambous, M.C., Mavromoustakis, C.X., Bani Yassein, M.: A Resource Intensive Traffic-Aware Scheme for Cluster-based Energy Conservation in Wireless Devices. In: 14th IEEE International Conference on High Performance Computing and Communications (HPCC 2012) of the Third International Workshop on Wireless Networks and Multimedia (WNM 2012), pp. 879–884. IEEE Press, Liverpool (2012)Google Scholar
  9. 9.
    Shpungin, H.: Energy Efficient Online Routing in Wireless Ad Hoc Networks. In: 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (IEEE SECON 2011). IEEE Press, Salt Lake City (2011)Google Scholar
  10. 10.
    Mavromoustakis, C.X., Zerfiridis, K.G.: On the diversity properties of wireless mobility with the user-centered temporal capacity awareness for EC in wireless devices. In: 6th IEEE International Conference on Wireless and Mobile Communications, ICWMC 2010, pp. 367–372. IEEE Press, Valencia (2010)CrossRefGoogle Scholar
  11. 11.
    Khalife, H., Ahuja, S., Malouch, N., Krunz, M.: Probabilistic pathselection in opportunistic cognitive radio networks. In: IEEEGlobecom 2008. IEEE Press, New Orleans (2008)Google Scholar
  12. 12.
    Ma, H., Zheng, L., Ma, X., Luo, Y.: Spectrum aware routing for multihopcognitive radio networks with a single transceiver. In: 3rd International Conference on CognitiveRadio Oriented Wireless Networks and Communications (CrownCom 2008), pp. 1–6. IEEE Press, Singapore (2008)Google Scholar
  13. 13.
    Shiang, H.P., van der Schaar, M.: Delay-sensitive resource managementin multi-hop cognitive radio networks. In: 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2008). IEEE Press, Chicago (2008)Google Scholar
  14. 14.
    Xin, C., Ma, L., Shen, C.C.: A path-centric channel assignmentframework for cognitive radio wireless networks. Mobile NetworksApplications (Kluwer) 13, 463–476 (2008)CrossRefGoogle Scholar
  15. 15.
    Chowdhury, K.R., Di Felice, M.: Search: a routing protocol for mobile cognitive radio ad-hoc networks. Computer Communication 32, 1983–1997 (2009)CrossRefGoogle Scholar
  16. 16.
    Pal, R.: Efficient routing algorithms for multi-channel dynamic spectrum access networks. In: 2nd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (IEEE DySPAN 2007), pp. 288–291. IEEE Press, Dublin (2007)CrossRefGoogle Scholar
  17. 17.
    Pefkianakis, I., Wong, S.H.Y., Lu, S.: SAMER: spectrum aware mesh routing in cognitive radio networks. In: 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2008). IEEE Press, Chicago (2008)Google Scholar
  18. 18.
    Chen, G., Liu, W., Li, Y., Cheng, W.: Spectrum aware on-demand routing in cognitive radio networks. In: 2nd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (IEEE DySPAN 2007), pp. 288–291. IEEE Press, Dublin (2007)Google Scholar
  19. 19.
    Mavromoustakis, C.X., Dimitriou, C.D., Mastorakis, G.: Using Real-Time Backward Traffic Difference Estimation for Energy Conservation in Wireless Devices. In: 4th International Conference on Advances in P2P Systems (AP2PS 2012), Barcelona, Spain, pp. 18–23 (2012)Google Scholar
  20. 20.
    Mavromoustakis, C.X., Karatza, H.D.: Real time performance evaluation of asynchronous time division traffic-aware and delay-tolerant scheme in ad-hoc sensor networks. International Journal of Communication Systems (IJCS), Wiley 23, 167–186 (2010)CrossRefGoogle Scholar
  21. 21.
    Yu, J., Petropulu, A.P.: Study of the effect of the wireless gateway on incoming self-similar traffic. IEEE Trans. Signal Processing 54, 3741–3758 (2006)CrossRefGoogle Scholar
  22. 22.
    Zhuang, X., Pande, S.: A scalable priority queue architecture for high speed network processing. In: 25th IEEE International Conference on Computer Communications (INFOCOM 2006), pp. 1–12. IEEE Press, Barcelona (2006)CrossRefGoogle Scholar
  23. 23.
    Cao, Q., Abdelzaher, T., He, T., Stankonic, J.: Towards optimal sleep scheduling in sensor networks for rare-event detection. In: 4th International Symposium on Information Processing in Sensor Networks, Piscataway, NJ, USA (2005)Google Scholar
  24. 24.
    Cunqing, H., Tak-Shink, P.Y.: Asynchronous Random Sleeping for Sensor Networks. ACM Transactions on Sensor Networks (TOSN) 3 (2007)Google Scholar
  25. 25.
    Jawhar, I., Wu, J., Agrawal, P.: Resource Scheduling in Wireless Networks Using Directional Antennas. IEEE Transactions on Parallel and Distributed Systems 21, 1240–1253 (2010)CrossRefGoogle Scholar
  26. 26.
    Perkins, C.E., Royer, E.M.: Ad hoc on-demand distance vector routing. In: IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100. IEEE Press, New Orleans (1999)Google Scholar
  27. 27.
    WiMAX Forum Specification. IEEE to WiMAX Forum (2011)Google Scholar
  28. 28.
    Camp, T., Boleng, J., Davies, V.: A Survey of Mobility Models for Ad Hoc Network Research. Wireless Communication & Mobile Computing (WCMC), Special Issue on Mobile Ad Hoc Networking: Research Trends and Applications 2, 483–502 (2002)CrossRefGoogle Scholar
  29. 29.
    Rhee, I., Warrier, A., Min, J., Xu, L.: DRAND: distributed randomized TDMA scheduling for wireless ad-hoc networks. In: Mobile Ad Hoc Networking and Computing, pp. 190–201 (2006)Google Scholar
  30. 30.
    Mavromoustakis, C.X., Dimitriou, C.D., Mastorakis, G.: On the Real-Time Evaluation of Two-Level BTD Scheme for Energy Conservation in the Presence of Delay Sensitive Transmissions and Intermittent Connectivity in Wireless Devices. International Journal on Advances in Networks and Services 6(3 and 4), 148–162 (2013)Google Scholar
  31. 31.
    Mastorakis, G., Mavromoustakis, C.X., Bourdena, A., Pallis, E., Sismanidis, G.: Optimizing radio resource management in energy-efficient cognitive radio networks. In: Proceedings of the 2nd ACM Workshop on High Performance Mobile Opportunistic Systems, pp. 75–82. ACM (2013)Google Scholar
  32. 32.
    Mastorakis, G., Mavromoustakis, C.X., Bourdena, A., Pallis, E.: An energy-efficient routing scheme using Backward Traffic Difference estimation in cognitive radio networks. In: IEEE 14th International Symposium and Workshops on World of Wireless, Mobile and Multimedia Networks, WoWMoM 2013 (2013)Google Scholar
  33. 33.
    Mastorakis, G., Mavromoustakis, C.X., Bourdena, A., Kormentzas, G., Pallis, E.: Maximizing energy conservation in a centralized cognitive radio network architecture. In: 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD 2013), pp. 175–179 (2013)Google Scholar
  34. 34.
    Mastorakis, G., Bourdena, A., Mavromoustakis, C.X., Pallis, E., Kormentzas, G.: An energy-efficient routing protocol for ad-hoc cognitive radio networks. In: Future Network and Mobile Summit (FutureNetworkSummit 2013) (2013)Google Scholar
  35. 35.
    Mavromoustakis, C.X., Dimitriou, C., Mastorakis, G., Pallis, E.: Real-Time Performance Evaluation of F-BTD scheme for optimized QoS Energy Conservation in Wireless Devices. In Proc. IEEE Globecom 2013, 2nd IEEE Workshop on Quality of Experience for Multimedia Communications (QoEMC 2013), Atlanta, GA, USA, December 09-13 (2013)Google Scholar
  36. 36.
    Dimitriou, C., Mavromoustakis, C.X., Mastorakis, G., Pallis, E.: On the performance response of delay-bounded energy-aware bandwidth allocation scheme in wireless networks. Paper Presented at the IEEE ICC 2013, Budapest, Hungary, June 9-13, pp. 9–13 (2013)Google Scholar
  37. 37.
    Bourdena, A., Mavromoustakis, C.X., Kormentzas, G., Pallis, E., Mastorakis, G., Yassein, M.B.: A Resource Intensive Traffic-Aware Scheme using Energy-efficient Routing in Cognitive Radio Networks, Future Generation Computer Systems, Elsevier (2014),
  38. 38.
    Mavromoustakis, C.X., Mastorakis, G., Bourdena, A., Pallis, E.: Energy Efficient Resource Sharing using a Traffic-oriented Routing Scheme for Cognitive Radio Networks. IET Networks Journal (2013), doi:10.1049/iet-net.2013.0132Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • George Mastorakis
    • 1
  • Constandinos X. Mavromoustakis
    • 2
  • Athina Bourdena
    • 3
  • Evangelos Pallis
    • 3
  • Giorgio Sismanidis
    • 4
  • Dimitrios Stratakis
    • 3
  • Stelios Papadakis
    • 1
  1. 1.Department of Business AdministrationTechnological Educational Institute of CreteCreteGreece
  2. 2.Department of Computer ScienceUniversity of NicosiaEngomi, NicosiaCyprus
  3. 3.Department of Informatics EngineeringTechnological Educational Institute of CreteCreteGreece
  4. 4.School of Engineering of Computing SystemsPolitecnico di MilanoMilanoItaly

Personalised recommendations