Skip to main content

Stiffness Analysis of a Fully Compliant Spherical Chain with Two Degrees of Freedom

  • Chapter
  • First Online:
Advances in Robot Kinematics

Abstract

This chapter introduces and investigates a fully compliant spherical chain that is obtained by the in-series connection of two identical primitive spherical flexures with coincident center of spherical motion. The compliance matrix of the proposed chain is obtained via an analytical procedure and validated via finite element analysis. Comparison with an equivalent fully compliant chain employing straight beam hinges is also provided to highlight the added benefits when using primitive spherical flexures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Callegari, M., Cammarata, A., Gabrielli, A., Ruggiu, M., Sinatra, R.: Analysis and design of a spherical micromechanism with flexure hinges. ASME J. Mech. Des. 131, 051003 (2009)

    Google Scholar 

  2. Carter Hale, L.: Principles and techniques for designing precision machines. Ph.D. thesis, Departtment of Mechanical Enggineering, MIT, Cambridge (1999)

    Google Scholar 

  3. Chiang, C.: Kinematics of Spherical Mechanisms. Krieger Publishing Company, Florida (2000)

    Google Scholar 

  4. Farhadi Machekposhti, D., Tolou, N., Herder, J.L.: The scope for a compliant homokinetic coupling based on review of compliant joints and rigid-body constant velocity universal joints. In: ASME IDETC, International Design Engineering Technical Conferences vol. 4, pp. 379–392 (2012)

    Google Scholar 

  5. Hesselbach, J., Wrege, J., Raatz, A., Becker, O.: Aspects on design of high precision parallel robots. Assembly Autom. 24(1), 49–57 (2004)

    Article  Google Scholar 

  6. Howell, L.L.: Compliant Mechanisms. Wiley, New York (2001)

    Google Scholar 

  7. Jacobsen, J.O., Chen, G., Howell, L.L., Magleby, S.P.: Lamina emergent torsional (LET) joint. Mechanims and Machine Theory 44(11), 2098–2109 (2009)

    Article  MATH  Google Scholar 

  8. Jafari, M., Mahjoob, M.: An exact three-dimensional beam element with nonuniform cross section. ASME J. Appl. Mech. 77(6) (2010)

    Google Scholar 

  9. Li, G., Chen, G.: Achieving compliant spherical linkage designs from compliant planar linkages based on prbm: a spherical young mechanism case study. In: IEEE ROBIO, International Conference on Robotics and Biomimetics, pp. 193–197. IEEE (2012)

    Google Scholar 

  10. Lobontiu, N.: Compliant Mechanisms: Design of Flexure Hinges. CRC Press, Boca Raton (2002)

    Google Scholar 

  11. Lobontiu, N., Garcia, E.: Two-axis flexure hinges with axially-collocated and symmetric notches. Comput. Struct. 81(13), 1329–1341 (2003)

    Article  Google Scholar 

  12. Lobontiu, N., Paine, J.: Design of circular cross-section corner-filleted flexure hinges for three-dimensional compliant mechanisms. ASME J. Mech. Des. 124(3), 479–484 (2002)

    Article  Google Scholar 

  13. Palmieri, G., Palpacelli, M.C., Callegari, M.: Study of a fully compliant u-joint designed for minirobotics applications. ASME J. Mech. Des. 134(11), 111003(9) (2012)

    Google Scholar 

  14. Parvari Rad, F., Berselli, G., Vertechy, R., Parenti-Castelli, V.: Compliance based characterization of spherical flexure hinges for spatial compliant mechanisms. In: 19th CISM-IFToMM Symposium on Robot Design, Dynamics, and Control, pp. 1–8 (2014) (Submitted to Romansy)

    Google Scholar 

  15. Pei, X., Yu, J., Zong, G., Bi, S., Su, H.: The modeling of cartwheel flexural hinges. Mech. Mach. Theory 44(10), 1900–1909 (2009)

    Article  MATH  Google Scholar 

  16. Smith, S.: Flexures, Elements of Elastic Mechanisms. Gordon and Breach Science Pub, New York (2000)

    Google Scholar 

  17. Trease, B., Moon, Y., Kota, S.: Design of large-displacement compliant joints. ASME J. Mech. Des. 127(4), 788–798 (2005)

    Article  Google Scholar 

  18. Zhang, S., Fasse, E.D.: A finite-element-based method to determine the spatial stiffness properties of a notch hinge. ASME J. Mech. Des. 123(1), 141–147 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Parvari Rad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parvari Rad, F., Berselli, G., Vertechy, R., Parenti-Castelli, V. (2014). Stiffness Analysis of a Fully Compliant Spherical Chain with Two Degrees of Freedom. In: Lenarčič, J., Khatib, O. (eds) Advances in Robot Kinematics. Springer, Cham. https://doi.org/10.1007/978-3-319-06698-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06698-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06697-4

  • Online ISBN: 978-3-319-06698-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics