Resource Mining: Applying Process Mining to Resource-Oriented Systems

  • Andrzej Stroiński
  • Dariusz Dwornikowski
  • Jerzy Brzeziński
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 176)


Service Oriented Architecture is an increasingly popular approach to implement complex distributed systems. It enables implementing complex functionality just by composing simple services into so called business processes. Unfortunately, such composition of services may lead to some incorrect system behavior. In order discover such depreciances and fix them, process mining methods may be used. Unfortunately, the current state of the art focuses only on SOAP-based Web Services leaving RESTful Web Service (resource-oriented) unsupported. In this article the relevance of adapting the Web Service Mining methods to new resource-oriented domain is introduced with initial work on process discovery in such systems.


process mining business process logging SOA REST 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P., et al.: Process mining: a two-step approach to balance between underfitting and overfitting. Software and Systems Modeling (2009)Google Scholar
  2. 2.
    van der Aalst, W.M.P., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. on Knowledge and Data Eng. (2004)Google Scholar
  4. 4.
    van der Aalst, W.: Service mining: Using process mining to discover, check, and improve service behavior. IEEE Transactions on Services Computing (2012)Google Scholar
  5. 5.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer Publishing Company, Incorporated (2011)Google Scholar
  6. 6.
    van der Aalst, W., Verbeek, H.: Process Mining in Web Services: The WebSphere Case. IEEE Bulletin of the Tech. Committee on Data Engineering (2008)Google Scholar
  7. 7.
    Barros, A., et al.: Correlation patterns in service-oriented architectures. In: Proc. of the 10th Int. Conf. on Fundamental Approaches to Soft. Eng., pp. 245–259 (2007)Google Scholar
  8. 8.
    Buijs, J., et al.: Towards cross-organizational process mining in collections of process models and their executions. In: BPM Workshops (2011)Google Scholar
  9. 9.
    Dustdar, S., et al.: Web services interaction mining. Tech. Rep. (2004)Google Scholar
  10. 10.
    Dustdar, S., et al.: Discovering web service workflows using web services interaction mining. Int. J. of Business Process Integration and Management 1, 256–266 (2007)CrossRefGoogle Scholar
  11. 11.
    Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures. Ph.D. thesis, University of California, Irvine (2000)Google Scholar
  12. 12.
    Gaaloul, W., Bhiri, S., Godart, C.: Research challenges and opportunities in web services (2006)Google Scholar
  13. 13.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining: Adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Hadley, M., Sandoz, P.: Jax-rs: Java api for restful web services (2008)Google Scholar
  15. 15.
    Ingvaldsen, J.E., Gulla, J.A.: Preprocessing support for large scale process mining of sap transactions. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 30–41. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Khan, A., Lodhi, A., Köppen, V., Kassem, G., Saake, G.: Applying process mining in soa environments. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 293–302. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: Getting started with aspectj. Communications of the ACM 44(10), 59–65 (2001)CrossRefGoogle Scholar
  18. 18.
    Motahari-Nezhad, H.R., Saint-Paul, R., et al.: Event correlation for process discovery from web service interaction logs. The VLDB Journal 20(3), 417–444 (2011)CrossRefGoogle Scholar
  19. 19.
    Mueller-Wickop, N., Schultz, M.: Erp event log preprocessing: Timestamps vs. accounting logic. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST 2013. LNCS, vol. 7939, pp. 105–119. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Pautasso, C., et al.: Restful web services vs. “big” web services: Making the right architectural decision. In: Proc. of the 17th Int. Conf. on WWW, pp. 805–814. ACM (2008)Google Scholar
  21. 21.
    Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrzej Stroiński
    • 1
  • Dariusz Dwornikowski
    • 1
  • Jerzy Brzeziński
    • 1
  1. 1.Institute of Computing SciencePoznań University of TechnologyPoznańPoland

Personalised recommendations