Advertisement

Property Testing Bounds for Linear and Quadratic Functions via Parity Decision Trees

  • Abhishek Bhrushundi
  • Sourav Chakraborty
  • Raghav Kulkarni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8476)

Abstract

In this paper, we study linear and quadratic Boolean functions in the context of property testing. We do this by observing that the query complexity of testing properties of linear and quadratic functions can be characterized in terms of complexity in another model of computation called parity decision trees.

The observation allows us to characterize testable properties of linear functions in terms of the approximate l 1 norm of the Fourier spectrum of an associated function. It also allows us to reprove the Ω(k) lower bound for testing k-linearity due to Blais et al [8]. More interestingly, it rekindles the hope of closing the gap of Ω(k) vs O(klogk) for testing k-linearity by analyzing the randomized parity decision tree complexity of a fairly simple function called E k that evaluates to 1 if and only if the number of 1s in the input is exactly k. The approach of Blais et al. using communication complexity is unlikely to give anything better than Ω(k) as a lower bound.

In the case of quadratic functions, we prove an adaptive two-sided Ω(n 2) lower bound for testing affine isomorphism to the inner product function. We remark that this bound is tight and furnishes an example of a function for which the trivial algorithm for testing affine isomorphism is the best possible. As a corollary, we obtain an Ω(n 2) lower bound for testing the class of Bent functions.

We believe that our techniques might be of independent interest and may be useful in proving other testing bounds.

Keywords

Boolean Function Quadratic Function Communication Complexity Truth Table Query Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization of the testable graph properties: It’s all about regularity. SIAM J. Comput. 39(1), 143–167 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S.N., Ron, D.: Testing low-degree polynomials over GF(2). In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) APPROX 2003 + RANDOM 2003. LNCS, vol. 2764, pp. 188–199. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Bhattacharyya, A., Fischer, E., Hatami, H., Hatami, P., Lovett, S.: Every locally characterized affine-invariant property is testable. In: Proceedings of the 45th Annual ACM Symposium on Symposium on Theory of Computing, STOC 2013, pp. 429–436. ACM Press, New York (2013), http://doi.acm.org/10.1145/2488608.2488662 CrossRefGoogle Scholar
  4. 4.
    Bhattacharyya, A., Grigorescu, E., Shapira, A.: A unified framework for testing linear-invariant properties. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 478–487 (2010)Google Scholar
  5. 5.
    Bhrushundi, A.: On testing bent functions. Electronic Colloquium on Computational Complexity (ECCC) 20, 89 (2013)Google Scholar
  6. 6.
    Bhrushundi, A., Chakraborty, S., Kulkarni, R.: Property testing bounds for linear and quadratic functions via parity decision trees. Electronic Colloquium on Computational Complexity (ECCC) 20, 142 (2013)Google Scholar
  7. 7.
    Blais, E.: Testing juntas nearly optimally. In: Proc. ACM Symposium on the Theory of Computing, pp. 151–158. ACM, New York (2009)Google Scholar
  8. 8.
    Blais, E., Brody, J., Matulef, K.: Property testing via communication complexity. In: Proc. CCC (2011)Google Scholar
  9. 9.
    Blais, E., Kane, D.: Tight bounds for testing k-linearity. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 435–446. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Blais, E., Weinstein, A., Yoshida, Y.: Partially symmetric functions are efficiently isomorphism-testable. In: FOCS, pp. 551–560 (2012)Google Scholar
  11. 11.
    Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. In: STOC, pp. 73–83 (1990)Google Scholar
  12. 12.
    Buhrman, H., García-Soriano, D., Matsliah, A., de Wolf, R.: The non-adaptive query complexity of testing k-parities. CoRR abs/1209.3849 (2012)Google Scholar
  13. 13.
    Chakrabarty, D., Seshadhri, C.: A o(n) monotonicity tester for boolean functions over the hypercube. CoRR abs/1302.4536 (2013)Google Scholar
  14. 14.
    Chakraborty, S., Fischer, E., García-Soriano, D., Matsliah, A.: Junto-symmetric functions, hypergraph isomorphism and crunching. In: IEEE Conference on Computational Complexity, pp. 148–158 (2012)Google Scholar
  15. 15.
    Chen, V., Sudan, M., Xie, N.: Property testing via set-theoretic operations. In: ICS, pp. 211–222 (2011)Google Scholar
  16. 16.
    Fischer, E.: The art of uninformed decisions: A primer to property testing. Science 75, 97–126 (2001)zbMATHGoogle Scholar
  17. 17.
    Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. Journal of Computer and System Sciences 68(4), 753–787 (2004), Special Issue on FOCS 2002Google Scholar
  18. 18.
    Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorodnitsky, A.: Monotonicity testing over general poset domains. In: STOC, pp. 474–483 (2002)Google Scholar
  19. 19.
    Goldreich, O.: On testing computability by small width obdds. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010. LNCS, vol. 6302, pp. 574–587. Springer, Heidelberg (2010)Google Scholar
  20. 20.
    Grigorescu, E., Wimmer, K., Xie, N.: Tight lower bounds for testing linear isomorphism. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 559–574. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Huang, W., Shi, Y., Zhang, S., Zhu, Y.: The communication complexity of the hamming distance problem. Inf. Process. Lett. 99(4), 149–153 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Kaufman, T., Sudan, M.: Algebraic property testing: the role of invariance. In: STOC, pp. 403–412 (2008)Google Scholar
  23. 23.
    Lee, T., Shraibman, A.: Lower bounds in communication complexity. Foundations and Trends in Theoretical Computer Science 3(4), 263–398 (2009)CrossRefMathSciNetGoogle Scholar
  24. 24.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes (North-Holland Mathematical Library). North Holland Publishing Co. (June 1988), http://www.worldcat.org/isbn/0444851933
  25. 25.
    Neumann, T.: Bent functions, Master’s thesis (2006)Google Scholar
  26. 26.
    O’Donnell, R.: Analysis of boolean functions (2012), http://www.analysisofbooleanfunctions.org
  27. 27.
    Rothaus, O.: On bent functions. Journal of Combinatorial Theory, Series A 20(3), 300–305 (1976), http://www.sciencedirect.com/science/article/pii/0097316576900248 CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Rubinfeld, R., Shapira, A.: Sublinear time algorithms. Electronic Colloquium on Computational Complexity (ECCC) 11(013) (2011)Google Scholar
  29. 29.
    Sun, X., Wang, C.: Randomized communication complexity for linear algebra problems over finite fields. In: STACS, pp. 477–488 (2012)Google Scholar
  30. 30.
    Wimmer, K., Yoshida, Y.: Testing linear-invariant function isomorphism. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 840–850. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Zhang, Z., Shi, Y.: On the parity complexity measures of boolean functions. Theor. Comput. Sci. 411(26-28), 2612–2618 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Abhishek Bhrushundi
    • 1
  • Sourav Chakraborty
    • 1
  • Raghav Kulkarni
    • 2
  1. 1.Chennai Mathematical InstituteIndia
  2. 2.Center for Quantum TechnologiesSingapore

Personalised recommendations