Advertisement

Crossing-Free Spanning Trees in Visibility Graphs of Points between Monotone Polygonal Obstacles

  • Julia Schüler
  • Andreas Spillner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8476)

Abstract

We consider the problem of deciding whether or not a geometric graph has a crossing-free spanning tree. This problem is known to be NP-hard even for very restricted types of geometric graphs. In this paper, we present an O(n 5) time algorithm to solve this problem for the special case of geometric graphs that arise as visibility graphs of a finite set of n points between two monotone polygonal obstacles. In addition, we give a combinatorial characterization of those visibility graphs induced by such obstacles that have a crossing-free spanning tree. As a byproduct, we obtain a family of counterexamples to the following conjecture by Rivera-Campo: A geometric graph has a crossing-free spanning tree if every subgraph obtained by removing a single vertex has a crossing-free spanning tree.

Keywords

geometric graph crossing-free spanning tree polygonal obstacle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpert, H., Koch, C., Laison, J.: Obstacle numbers of graphs. Discrete & Computational Geometry 44, 223–244 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ben-Moshe, B., Katz, M., Mitchell, J.: A constant-factor approximation algorithm for optimal 1.5D terrain guarding. SIAM Journal on Computing 36, 1631–1647 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cheng, Q., Chrobak, M., Sundaram, G.: Computing simple paths among obstacles. Computational Geometry 16, 223–233 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Clarkson, K., Varadarajan, K.: Improved approximation algorithms for geometric set cover. Discrete & Computational Geometry 37, 43–58 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Daescu, O., Luo, J.: Computing simple paths on points in simple polygons. In: Ito, H., Kano, M., Katoh, N., Uno, Y. (eds.) KyotoCGGT 2007. LNCS, vol. 4535, pp. 41–55. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Eidenbenz, S.: Inapproximability results for guarding polygons without holes. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 427–436. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Elbassioni, K., Krohn, E., Matijević, D., Mestre, J., Ševerdija, D.: Improved approximations for guarding 1.5-dimensional terrains. Algorithmica 60, 451–463 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gibson, M., Kanade, G., Krohn, E., Varadarajan, K.: An approximation scheme for terrain guarding. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 140–148. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Halldórsson, M., Knauer, C., Spillner, A., Tokuyama, T.: Fixed-parameter tractability for non-crossing spanning trees. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 410–421. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Jansen, K., Woeginger, G.: The complexity of detecting crossingfree configurations in the plane. BIT 33, 580–595 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Károlyi, G., Pach, J., Tóth, G.: Ramsey-type results for geometric graphs I. Discrete & Computational Geometry 18, 247–255 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Keller, C., Perles, M., Rivera-Campo, E., Urrutia-Galicia, V.: Blockers for noncrossing spanning trees in complete geometric graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 383–397. Springer (2013)Google Scholar
  13. 13.
    King, J.: A 4-approximation algorithm for guarding 1.5-dimensional terrains. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 629–640. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    King, J., Krohn, E.: Terrain guarding is NP-hard. SIAM Journal on Computing 40, 1316–1339 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Knauer, C., Schramm, É., Spillner, A., Wolff, A.: Configurations with few crossings in topological graphs. Computational Geometry 37, 104–114 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Koch, A., Krug, M., Rutter, I.: Graphs with plane outside-obstacle representations (2013) available online: arXiv:1306.2978Google Scholar
  17. 17.
    Krohn, E., Nilsson, B.: The complexity of guarding monotone polygons. In: Proc. Canadian Conference on Computational Geoemtry, pp. 167–172 (2012)Google Scholar
  18. 18.
    Krohn, E., Nilsson, B.: Approximate guarding of monotone and rectilinear polygons. Algorithmica 66, 564–594 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Mukkamala, P., Pach, J., Pálvölgyi, D.: Lower bounds on the obstacle number of graphs. The Electronic Journal of Combinatorics 19 (2012)Google Scholar
  20. 20.
    Pach, J., Sarıöz, D.: On the structure of graphs with low obstacle number. Graphs and Combinatorics 27, 465–473 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Rivera-Campo, E.: A note on the existente of plane spanning trees of geometrie graphs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 274–277. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Julia Schüler
    • 1
  • Andreas Spillner
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of GreifswaldGermany

Personalised recommendations