Advertisement

First-Order Logic on CPDA Graphs

  • Paweł Parys
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8476)

Abstract

We contribute to the question about decidability of first-order logic on configuration graphs of collapsible pushdown automata. Our first result is decidability of existential FO sentences on configuration graphs (and their ε-closures) of collapsible pushdown automata of order 3, restricted to reachable configurations. Our second result is undecidability of the whole first-order logic on configuration graphs which are not restricted to reachable configurations, but are restricted to constructible stacks. Our third result is decidability of first-order logic on configuration graphs (for arbitrary order of automata) which are not restricted to reachable configurations nor to constructible stacks, under an alternative definition of stacks, called annotated stacks.

Keywords

Recursion Scheme Empty Graph Pushdown Automaton Parity Game Configuration Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl. 15, 1170–1174 (1974)zbMATHGoogle Scholar
  2. 2.
    Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission 12, 38–43 (1976)Google Scholar
  3. 3.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Parys, P.: Collapse operation increases expressive power of deterministic higher order pushdown automata. In: Schwentick, T., Dürr, C. (eds.) STACS. LIPIcs, vol. 9, pp. 603–614. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik (2011)Google Scholar
  5. 5.
    Parys, P.: On the significance of the collapse operation. In: LICS, pp. 521–530. IEEE (2012)Google Scholar
  6. 6.
    Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown automata and recursion schemes. In: LICS, pp. 452–461. IEEE Computer Society (2008)Google Scholar
  7. 7.
    Knapik, T., Niwiński, D., Urzyczyn, P., Walukiewicz, I.: Unsafe grammars and panic automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1450–1461. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Cachat, T.: Higher order pushdown automata, the Caucal hierarchy of graphs and parity games. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 556–569. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Kartzow, A.: Collapsible pushdown graphs of level 2 are tree-automatic. Logical Methods in Computer Science 9(1) (2013)Google Scholar
  12. 12.
    Broadbent, C.H.: On collapsible pushdown automata, their graphs and the power of links. PhD thesis, University of Oxford (2011)Google Scholar
  13. 13.
    Broadbent, C.H.: Prefix rewriting for nested-words and collapsible pushdown automata. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 153–164. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Broadbent, C.H.: The limits of decidability for first order logic on CPDA graphs. In: Dürr, C., Wilke, T. (eds.) STACS. LIPIcs, vol. 14, pp. 589–600. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  15. 15.
    Broadbent, C.H.: On first-order logic and CPDA graphs. Accepted to Theory of Computing SystemsGoogle Scholar
  16. 16.
    Broadbent, C.H., Carayol, A., Hague, M., Serre, O.: A saturation method for collapsible pushdown systems. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 165–176. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Kartzow, A., Parys, P.: Strictness of the collapsible pushdown hierarchy. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 566–577. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Trachtenbrot, B.: Impossibility of an algorithm for the decision problem in finite classes. Doklady Akad. Nauk. 70, 569–572 (1950)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Paweł Parys
    • 1
  1. 1.University of WarsawWarsawPoland

Personalised recommendations