# Algorithmic Meta Theorems for Sparse Graph Classes

• Martin Grohe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8476)

## Abstract

Algorithmic meta theorems give efficient algorithms for classes of algorithmic problems, instead of just individual problems. They unify families of algorithmic results obtained by similar techniques and thus exhibit the core of these techniques. The classes of problems are typically defined in terms of logic and structural graph theory. A well-known example of an algorithmic meta theorem is Courcelle’s Theorem, stating that all properties of graphs of bounded tree width that are definable in monadic second-order logic are decidable in linear time.

This paper is a brief and nontechnical survey of the most important algorithmic meta theorems.

## References

1. 1.
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal of Algorithms 12, 308–340 (1991)
2. 2.
Bagan, G.: MSO queries on tree decomposable structures are computable with linear delay. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 167–181. Springer, Heidelberg (2006)
3. 3.
Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 194–242. Elsevier Science Publishers (1990)Google Scholar
4. 4.
Courcelle, B.: Linear delay enumeration and monadic second-order logic. Discrete Applied Mathematics 157(12), 2675–2700 (2009)
5. 5.
Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique width. Theory of Computing Systems 33(2), 125–150 (2000)
6. 6.
Courcelle, B., Makowsky, J., Rotics, U.: On the fixed-parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Applied Mathematics 108(1-2), 23–52 (2001)
7. 7.
Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theoretical Computer Science 109, 49–82 (1993)
8. 8.
Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Proceedings of the 22nd IEEE Symposium on Logic in Computer Science, pp. 270–279 (2007)Google Scholar
9. 9.
Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Approximation schemes for first-order definable optimisation problems. In: Proceedings of the 21st IEEE Symposium on Logic in Computer Science, pp. 411–420 (2006)Google Scholar
10. 10.
Downey, R., Fellows, M.: Fundamentals of Parameterized Complexity. Springer (2013)Google Scholar
11. 11.
Durand, A., Schweikardt, N., Segoufin, L.: Enumerating first-order queries over databases of low degree. In: Proceedings of the 33rd ACM Symposium on Principles of Database Systems (2014)Google Scholar
12. 12.
Durand, A., Grandjean, E.: First-order queries on structures of bounded degree are computable with constant delay. ACM Transactions on Computational Logic 8(4) (2007)Google Scholar
13. 13.
Dvořák, Z., Král, D., Thomas, R.: Deciding first-order properties for sparse graphs. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 133–142 (2010)Google Scholar
14. 14.
Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of bodlaender and courcelle. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 143–152 (2010)Google Scholar
15. 15.
Elberfeld, M., Jakoby, A., Tantau, T.: Algorithmic meta theorems for circuit classes of constant and logarithmic depth. In: Dürr, C., Wilke, T. (eds.) Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 14, pp. 66–77. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik (2012)Google Scholar
16. 16.
Elberfeld, M., Kawarabayashi, K.I.: Embedding and canonizing graphs of bounded genus in logspace. In: Proceedings of the 46th ACM Symposium on Theory of Computing (2014)Google Scholar
17. 17.
Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. Journal of the ACM 49(6), 716–752 (2002)
18. 18.
Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking. SIAM Journal on Computing 31(1), 113–145 (2001)
19. 19.
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
20. 20.
Frick, M.: Generalized model-checking over locally tree-decomposable classes. Theory of Computing Systems 37(1), 157–191 (2004)
21. 21.
Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. Journal of the ACM 48, 1184–1206 (2001)
22. 22.
Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Annals of Pure and Applied Logic 130, 3–31 (2004)
23. 23.
Ganian, R., Hliněný, P., Langer, A., Obdrlek, J., Rossmanith, P., Sikdar, S.: Lower bounds on the complexity of MSO1 model-checking. In: Dürr, C., Wilke, T. (eds.) Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 14, pp. 326–337. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik (2012)Google Scholar
24. 24.
Ganian, R., Hliněný, P., Král’, D., Obdržálek, J., Schwartz, J., Teska, J.: FO model checking of interval graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 250–262. Springer, Heidelberg (2013)
25. 25.
Grohe, M.: Generalized model-checking problems for first-order logic. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 12–26. Springer, Heidelberg (2001)
26. 26.
Grohe, M.: Logic, graphs, and algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata – History and Perspectives. Texts in Logic and Games, vol. 2, pp. 357–422. Amsterdam University Press (2007)Google Scholar
27. 27.
Grohe, M., Kawarabayashi, K., Reed, B.: A simple algorithm for the graph minor decomposition – logic meets structural graph theory. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 414–431 (2013)Google Scholar
28. 28.
Grohe, M., Kreutzer, S.: Methods for algorithmic meta theorems. In: Grohe, M., Makowsky, J. (eds.) Model Theoretic Methods in Finite Combinatorics. Contemporary Mathematics, vol. 558, pp. 181–206. American Mathematical Society (2011)Google Scholar
29. 29.
Grohe, M., Kreutzer, S., Siebertz, S.: Characterisations of nowhere denese graphs. In: Seth, A., Vishnoi, N. (eds.) Proceedings of the 32nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. LIPIcs, vol. 24, pp. 21–40. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik (2013)Google Scholar
30. 30.
Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. In: Proceedings of the 46th ACM Symposium on Theory of Computing (2014)Google Scholar
31. 31.
Kazana, W., Segoufin, L.: First-order query evaluation on structures of bounded degree. Logical Methods in Computer Science 7(2) (2011)Google Scholar
32. 32.
Kazana, W., Segoufin, L.: Enumeration of first-order queries on classes of structures with bounded expansion. In: Proceedings of the 32nd ACM Symposium on Principles of Database Systems, pp. 297–308 (2013)Google Scholar
33. 33.
Kreutzer, S.: Algorithmic meta-theorems. In: Esparza, J., Michaux, C., Steinhorn, C. (eds.) Finite and Algorithmic Model Theory. London Mathematical Society Lecture Note Series, ch. 5, pp. 177–270. Cambridge University Press (2011)Google Scholar
34. 34.
Kreutzer, S., Tazari, S.: Lower bounds for the complexity of monadic second-order logic. In: Proceedings of the 25th IEEE Symposium on Logic in Computer Science, pp. 189–198 (2010)Google Scholar
35. 35.
Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized intractability of monadic second-order logic. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 354–364 (2010)Google Scholar
36. 36.
Kreutzer, S.: On the parameterised intractability of monadic second-order logic. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 348–363. Springer, Heidelberg (2009)
37. 37.
Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Evaluation of an mso-solver. In: Proceedings of the 14th Meeting on Algorithm Engineering & Experiments, pp. 55–63 (2012)Google Scholar
38. 38.
Nešetřil, J., Ossona de Mendez, P.: On nowhere dense graphs. European Journal of Combinatorics 32(4), 600–617 (2011)
39. 39.
Nešetřil, J., Ossona de Mendez, P.: Sparsity. Springer (2012)Google Scholar
40. 40.
Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)
41. 41.
Seese, D.: Linear time computable problems and first-order descriptions. Mathematical Structures in Computer Science 6, 505–526 (1996)