Advertisement

Algorithmic Meta Theorems for Sparse Graph Classes

  • Martin Grohe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8476)

Abstract

Algorithmic meta theorems give efficient algorithms for classes of algorithmic problems, instead of just individual problems. They unify families of algorithmic results obtained by similar techniques and thus exhibit the core of these techniques. The classes of problems are typically defined in terms of logic and structural graph theory. A well-known example of an algorithmic meta theorem is Courcelle’s Theorem, stating that all properties of graphs of bounded tree width that are definable in monadic second-order logic are decidable in linear time.

This paper is a brief and nontechnical survey of the most important algorithmic meta theorems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal of Algorithms 12, 308–340 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bagan, G.: MSO queries on tree decomposable structures are computable with linear delay. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 167–181. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 194–242. Elsevier Science Publishers (1990)Google Scholar
  4. 4.
    Courcelle, B.: Linear delay enumeration and monadic second-order logic. Discrete Applied Mathematics 157(12), 2675–2700 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique width. Theory of Computing Systems 33(2), 125–150 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Courcelle, B., Makowsky, J., Rotics, U.: On the fixed-parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Applied Mathematics 108(1-2), 23–52 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theoretical Computer Science 109, 49–82 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Proceedings of the 22nd IEEE Symposium on Logic in Computer Science, pp. 270–279 (2007)Google Scholar
  9. 9.
    Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Approximation schemes for first-order definable optimisation problems. In: Proceedings of the 21st IEEE Symposium on Logic in Computer Science, pp. 411–420 (2006)Google Scholar
  10. 10.
    Downey, R., Fellows, M.: Fundamentals of Parameterized Complexity. Springer (2013)Google Scholar
  11. 11.
    Durand, A., Schweikardt, N., Segoufin, L.: Enumerating first-order queries over databases of low degree. In: Proceedings of the 33rd ACM Symposium on Principles of Database Systems (2014)Google Scholar
  12. 12.
    Durand, A., Grandjean, E.: First-order queries on structures of bounded degree are computable with constant delay. ACM Transactions on Computational Logic 8(4) (2007)Google Scholar
  13. 13.
    Dvořák, Z., Král, D., Thomas, R.: Deciding first-order properties for sparse graphs. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 133–142 (2010)Google Scholar
  14. 14.
    Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of bodlaender and courcelle. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 143–152 (2010)Google Scholar
  15. 15.
    Elberfeld, M., Jakoby, A., Tantau, T.: Algorithmic meta theorems for circuit classes of constant and logarithmic depth. In: Dürr, C., Wilke, T. (eds.) Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 14, pp. 66–77. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  16. 16.
    Elberfeld, M., Kawarabayashi, K.I.: Embedding and canonizing graphs of bounded genus in logspace. In: Proceedings of the 46th ACM Symposium on Theory of Computing (2014)Google Scholar
  17. 17.
    Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. Journal of the ACM 49(6), 716–752 (2002)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking. SIAM Journal on Computing 31(1), 113–145 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  20. 20.
    Frick, M.: Generalized model-checking over locally tree-decomposable classes. Theory of Computing Systems 37(1), 157–191 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. Journal of the ACM 48, 1184–1206 (2001)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Annals of Pure and Applied Logic 130, 3–31 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Ganian, R., Hliněný, P., Langer, A., Obdrlek, J., Rossmanith, P., Sikdar, S.: Lower bounds on the complexity of MSO1 model-checking. In: Dürr, C., Wilke, T. (eds.) Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 14, pp. 326–337. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  24. 24.
    Ganian, R., Hliněný, P., Král’, D., Obdržálek, J., Schwartz, J., Teska, J.: FO model checking of interval graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 250–262. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Grohe, M.: Generalized model-checking problems for first-order logic. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 12–26. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Grohe, M.: Logic, graphs, and algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata – History and Perspectives. Texts in Logic and Games, vol. 2, pp. 357–422. Amsterdam University Press (2007)Google Scholar
  27. 27.
    Grohe, M., Kawarabayashi, K., Reed, B.: A simple algorithm for the graph minor decomposition – logic meets structural graph theory. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 414–431 (2013)Google Scholar
  28. 28.
    Grohe, M., Kreutzer, S.: Methods for algorithmic meta theorems. In: Grohe, M., Makowsky, J. (eds.) Model Theoretic Methods in Finite Combinatorics. Contemporary Mathematics, vol. 558, pp. 181–206. American Mathematical Society (2011)Google Scholar
  29. 29.
    Grohe, M., Kreutzer, S., Siebertz, S.: Characterisations of nowhere denese graphs. In: Seth, A., Vishnoi, N. (eds.) Proceedings of the 32nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. LIPIcs, vol. 24, pp. 21–40. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik (2013)Google Scholar
  30. 30.
    Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. In: Proceedings of the 46th ACM Symposium on Theory of Computing (2014)Google Scholar
  31. 31.
    Kazana, W., Segoufin, L.: First-order query evaluation on structures of bounded degree. Logical Methods in Computer Science 7(2) (2011)Google Scholar
  32. 32.
    Kazana, W., Segoufin, L.: Enumeration of first-order queries on classes of structures with bounded expansion. In: Proceedings of the 32nd ACM Symposium on Principles of Database Systems, pp. 297–308 (2013)Google Scholar
  33. 33.
    Kreutzer, S.: Algorithmic meta-theorems. In: Esparza, J., Michaux, C., Steinhorn, C. (eds.) Finite and Algorithmic Model Theory. London Mathematical Society Lecture Note Series, ch. 5, pp. 177–270. Cambridge University Press (2011)Google Scholar
  34. 34.
    Kreutzer, S., Tazari, S.: Lower bounds for the complexity of monadic second-order logic. In: Proceedings of the 25th IEEE Symposium on Logic in Computer Science, pp. 189–198 (2010)Google Scholar
  35. 35.
    Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized intractability of monadic second-order logic. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 354–364 (2010)Google Scholar
  36. 36.
    Kreutzer, S.: On the parameterised intractability of monadic second-order logic. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 348–363. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. 37.
    Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Evaluation of an mso-solver. In: Proceedings of the 14th Meeting on Algorithm Engineering & Experiments, pp. 55–63 (2012)Google Scholar
  38. 38.
    Nešetřil, J., Ossona de Mendez, P.: On nowhere dense graphs. European Journal of Combinatorics 32(4), 600–617 (2011)zbMATHMathSciNetGoogle Scholar
  39. 39.
    Nešetřil, J., Ossona de Mendez, P.: Sparsity. Springer (2012)Google Scholar
  40. 40.
    Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Seese, D.: Linear time computable problems and first-order descriptions. Mathematical Structures in Computer Science 6, 505–526 (1996)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martin Grohe
    • 1
  1. 1.RWTH Aachen UniversityGermany

Personalised recommendations