Processing Succinct Matrices and Vectors

  • Markus Lohrey
  • Manfred Schmidt-Schauß
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8476)


We study the complexity of algorithmic problems for matrices that are represented by multi-terminal decision diagrams (MTDD). These are a variant of ordered decision diagrams, where the terminal nodes are labeled with arbitrary elements of a semiring (instead of 0 and 1). A simple example shows that the product of two MTDD-represented matrices cannot be represented by an MTDD of polynomial size. To overcome this deficiency, we extended MTDDs to MTDD +  by allowing componentwise symbolic addition of variables (of the same dimension) in rules. It is shown that accessing an entry, equality checking, matrix multiplication, and other basic matrix operations can be solved in polynomial time for MTDD + -represented matrices. On the other hand, testing whether the determinant of a MTDD-represented matrix vanishes is PSPACE-complete, and the same problem is NP-complete for MTDD + -represented diagonal matrices. Computing a specific entry in a product of MTDD-represented matrices is #P-complete. Complete proofs can be found in the full version [19] of this paper.


Polynomial Time Boolean Function Turing Machine Equality Check Matrix Entry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theor. Comput. Sci. 107, 3–30 (1993)CrossRefzbMATHGoogle Scholar
  2. 2.
    Beaudry, M., Holzer, M.: The complexity of tensor circuit evaluation. Computational Complexity 16(1), 60–111 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Rytter, W.: On the complexity of pattern matching for highly compressed two-dimensional texts. J. Comput. Syst. Sci. 65, 332–350 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bertoni, A., Choffrut, C., Radicioni, R.: Literal shuffle of compressed words. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) TCS 2008. IFIP, vol. 273, pp. 87–100. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
  6. 6.
    Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. Journal of Computer and System Sciences 57(2), 200–212 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Damm, C., Holzer, M., McKenzie, P.: The complexity of tensor calculus. Computational Complexity 11(1-2), 54–89 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Eppstein, D., Goodrich, M.T., Sun, J.Z.: Skip quadtrees: Dynamic data structures for multidimensional point sets. Int. J. Comput. Geometry Appl. 18, 131–160 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Feigenbaum, J., Kannan, S., Vardi, M.Y., Viswanathan, M.: The complexity of problems on graphs represented as obdds. Chicago J. Theor. Comput. Sci. (1999)Google Scholar
  10. 10.
    Fujii, H., Ootomo, G., Hori, C.: Interleaving based variable ordering methods for ordered binary decision diagrams. In: Proc. ICCAD 1993, pp. 38–41. IEEE Computer Society (1993)Google Scholar
  11. 11.
    Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multi-terminal binary decision diagrams: An efficient data structure for matrix representation. Formal Methods in System Design 10(2/3), 149–169 (1997)CrossRefGoogle Scholar
  12. 12.
    Galota, M., Vollmer, H.: Functions computable in polynomial space. Inf. Comput. 198(1), 56–70 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Galperin, H., Wigderson, A.: Succinct representations of graphs. Inform. and Control 56, 183–198 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Grenet, B., Koiran, P., Portier, N.: On the complexity of the multivariate resultant. J. Complexity 29(2), 142–157 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ladner, R.E.: Polynomial space counting problems. SIAM J. Comput. 18, 1087–1097 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Lenstra, H.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8, 538–548 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Lohrey, M.: Leaf languages and string compression. Inf. Comput. 209, 951–965 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex. Cryptol. 4, 241–299 (2012)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Lohrey, M., Schmidt-Schauß, M.: Processing Succinct Matrices and Vectors. arXiv (2014),
  20. 20.
    Malod, G.: Succinct algebraic branching programs characterizing non-uniform complexity classes. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 205–216. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design: OBDD - Foundations and Applications. Springer (1998)Google Scholar
  22. 22.
    Mereghetti, C., Palano, B.: Threshold circuits for iterated matrix product and powering. ITA 34(1), 39–46 (2000)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Plandowski, W.: Testing equivalence of morphisms in context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  24. 24.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley (1990)Google Scholar
  25. 25.
    Storjohann, A., Mulders, T.: Fast algorithms for linear algebra modulo N. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 139–150. Springer, Heidelberg (1998)Google Scholar
  26. 26.
    Taĭclin, M.A.: Algorithmic problems for commutative semigroups. Dokl. Akda. Nauk SSSR 9(1), 201–204 (1968)Google Scholar
  27. 27.
    Toda, S.: Counting problems computationally equivalent to computing the determinant. Technical Report CSIM 91-07, Tokyo University of Electro-Communications (1991)Google Scholar
  28. 28.
    Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20, 865–877 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Valiant, L.G.: Completeness classes in algebra. In: Proc. STOC 1979, pp. 249–261. ACM (1979)Google Scholar
  30. 30.
    Veith, H.: How to encode a logical structure by an OBDD. In: Proc. 13th Annual IEEE Conference on Computational Complexity, pp. 122–131. IEEE Computer Society (1998)Google Scholar
  31. 31.
    Wegener, I.: The size of reduced OBDD’s and optimal read-once branching programs for almost all boolean functions. IEEE Trans. Computers 43(11), 1262–1269 (1994)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Markus Lohrey
    • 1
  • Manfred Schmidt-Schauß
    • 2
  1. 1.Department für Elektrotechnik und InformatikUniversität SiegenGermany
  2. 2.Institut für InformatikGoethe-UniversitätFrankfurtGermany

Personalised recommendations