Advertisement

Semiautomatic Structures

  • Sanjay Jain
  • Bakhadyr Khoussainov
  • Frank Stephan
  • Dan Teng
  • Siyuan Zou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8476)

Abstract

Semiautomatic structures generalise automatic structures in the sense that for some of the relations and functions in the structure one only requires the derived relations and structures are automatic when all but one input are filled with constants. One can also permit that this applies to equality in the structure so that only the sets of representatives equal to a given element of the structure are regular while equality itself is not an automatic relation on the domain of representatives. It is shown that one can find semiautomatic representations for the field of rationals and also for finite algebraic field extensions of it. Furthermore, one can show that infinite algebraic extensions of finite fields have semiautomatic representations in which the addition and equality are both automatic. Further prominent examples of semiautomatic structures are term algebras, any relational structure over a countable domain with a countable signature and any permutation algebra with a countable domain. Furthermore, examples of structures which fail to be semiautomatic are provided.

Keywords

Cayley Graph Order Theory Algebraic Extension Automatic Function Automatic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Case, J., Jain, S., Seah, S., Stephan, F.: Automatic Functions, Linear Time and Learning. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 96–106. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Delhommé, C.: Automaticité des ordinaux et des graphes homogènes. Comptes Rendus Mathematique 339(1), 5–10 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones and Bartlett Publishers, Boston (1992)zbMATHGoogle Scholar
  4. 4.
    Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press (1963)Google Scholar
  5. 5.
    Hodgson, B.R.: Décidabilité par automate fini. Annales des Sciences Mathématiques du Québec 7(1), 39–57 (1983)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation, 3rd edn. Addison-Wesley (2007)Google Scholar
  7. 7.
    Kharlampovich, O., Khoussainov, B., Miasnikov, A.: From automatic structures to automatic groups. CoRR abs/1107.3645 (2011)Google Scholar
  8. 8.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Khoussainov, B., Rubin, S., Stephan, F.: Definability and Regularity in Automatic Structures. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 440–451. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Miasnikov, A., Šunić, Z.: Cayley graph automatic groups are not necessarily Cayley graph biautomatic. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 401–407. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Neumann, B.H.: On ordered groups. American Journal of Mathematics 71, 1–18 (1949)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Nies, A.: Describing Groups. The Bulletin of Symbolic Logic 13(3), 305–339 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Nies, A., Thomas, R.: FA-presentable groups and rings. Journal of Algebra 320, 569–585 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Tsankov, T.: The additive group of the rationals does not have an automatic presentation. The Journal of Symbolic Logic 76(4), 1341–1351 (2011)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sanjay Jain
    • 1
  • Bakhadyr Khoussainov
    • 2
  • Frank Stephan
    • 3
  • Dan Teng
    • 3
  • Siyuan Zou
    • 3
  1. 1.Department of Computer ScienceNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand
  3. 3.Department of MathematicsThe National University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations