Advertisement

Block Products and Nesting Negations in FO2

  • Lukas Fleischer
  • Manfred Kufleitner
  • Alexander Lauser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8476)

Abstract

The alternation hierarchy in two-variable first-order logic FO2[ < ] over words was recently shown to be decidable by Kufleitner and Weil, and independently by Krebs and Straubing. In this paper we consider a similar hierarchy, reminiscent of the half levels of the dot-depth hierarchy or the Straubing-Thérien hierarchy. The fragment \(\Sigma^2_m\) of FO2 is defined by disallowing universal quantifiers and having at most m − 1 nested negations. One can view \(\Sigma^2_m\) as the formulas in FO2 which have at most m blocks of quantifiers on every path of their parse tree, and the first block is existential. Thus, the m th level of the FO2-alternation hierarchy is the Boolean closure of \(\Sigma^2_m\). We give an effective characterization of \(\Sigma^2_m\), i.e., for every integer m one can decide whether a given regular language is definable by a two-variable first-order formula with negation nesting depth at most m. More precisely, for every m we give ω-terms U m and V m such that an FO2-definable language is in \(\Sigma^2_m\) if and only if its ordered syntactic monoid satisfies the identity U m  ≤ V m . Among other techniques, the proof relies on an extension of block products to ordered monoids.

Keywords

regular language finite monoid positive variety first-order logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. J. Comput. Syst. Sci. 5(1), 1–16 (1971)MATHMathSciNetGoogle Scholar
  3. 3.
    Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order logic over finite words. Int. J. Found. Comput. Sci. 19(3), 513–548 (2008)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. In: Perspectives in Mathematical Logic. Springer (1995)Google Scholar
  5. 5.
    Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98, 21–51 (1961)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Glaßer, C., Schmitz, H.: Languages of dot-depth 3/2. Theory of Computing Systems 42(2), 256–286 (2008)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California (1968)Google Scholar
  8. 8.
    Knast, R.: A semigroup characterization of dot-depth one languages. RAIRO, Inf. Théor. 17(4), 321–330 (1983)MATHMathSciNetGoogle Scholar
  9. 9.
    Krebs, A., Straubing, H.: An effective characterization of the alternation hierarchy in two-variable logic. In: FSTTCS 2012, Proceedings. LIPIcs, vol. 18, pp. 86–98. Dagstuhl Publishing (2012)Google Scholar
  10. 10.
    Kufleitner, M., Lauser, A.: Languages of dot-depth one over infinite words. In: Proceedings of LICS 2011, pp. 23–32. IEEE Computer Society (2011)Google Scholar
  11. 11.
    Kufleitner, M., Lauser, A.: Around dot-depth one. Int. J. Found. Comput. Sci. 23(6), 1323–1339 (2012)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Kufleitner, M., Lauser, A.: The join levels of the trotter-weil hierarchy are decidable. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 603–614. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Kufleitner, M., Lauser, A.: The join of the varieties of R-trivial and L-trivial monoids via combinatorics on words. Discrete Math. & Theor. Comput. Sci. 14(1), 141–146 (2012)Google Scholar
  14. 14.
    Kufleitner, M., Lauser, A.: Quantifier alternation in two-variable first-order logic with successor is decidable. In: Proceedings of STACS 2013. LIPIcs, vol. 20, pp. 305–316. Dagstuhl Publishing (2013)Google Scholar
  15. 15.
    Kufleitner, M., Weil, P.: The FO2 alternation hierarchy is decidable. In: Proceedings of CSL 2012. LIPIcs, vol. 16, pp. 426–439. Dagstuhl Publishing (2012)Google Scholar
  16. 16.
    Kufleitner, M., Weil, P.: On logical hierarchies within FO2-definable languages. Log. Methods Comput. Sci. 8, 1–30 (2012)MathSciNetGoogle Scholar
  17. 17.
    McNaughton, R., Papert, S.: Counter-Free Automata. The MIT Press (1971)Google Scholar
  18. 18.
    Pin, J.-É.: A variety theorem without complementation. Russian Mathematics (Iz. VUZ) 39, 80–90 (1995)MathSciNetGoogle Scholar
  19. 19.
    Pin, J.-É., Weil, P.: Polynomial closure and unambiguous product. Theory Comput. Syst. 30(4), 383–422 (1997)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Pin, J.-É., Weil, P.: The wreath product principle for ordered semigroups. Commun. Algebra 30(12), 5677–5713 (2002)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)CrossRefMATHGoogle Scholar
  22. 22.
    Schwentick, T., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: A new characterization of DA. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 239–250. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)Google Scholar
  24. 24.
    Straubing, H.: A generalization of the Schützenberger product of finite monoids. Theor. Comput. Sci. 13, 137–150 (1981)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser (1994)Google Scholar
  26. 26.
    Straubing, H.: Algebraic characterization of the alternation hierarchy in FO2[ < ] on finite words. In: Proceedings CSL 2011. LIPIcs, vol. 12, pp. 525–537. Dagstuhl Publishing (2011)Google Scholar
  27. 27.
    Straubing, H., Thérien, D.: Weakly iterated block products of finite monoids. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 91–104. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Tesson, P., Thérien, D.: Diamonds are forever: The variety DA. In: Proceedings of Semigroups, Algorithms, Automata and Languages, pp. 475–500. World Scientific (2002)Google Scholar
  29. 29.
    Thérien, D.: Classification of finite monoids: The language approach. Theor. Comput. Sci. 14(2), 195–208 (1981)CrossRefMATHGoogle Scholar
  30. 30.
    Thérien, D.: Th. Wilke. Over words, two variables are as powerful as one quantifier alternation. In: Proceedings of STOC 1998, pp. 234–240. ACM Press (1998)Google Scholar
  31. 31.
    Thomas, W.: Classifying regular events in symbolic logic. J. Comput. Syst. Sci. 25, 360–376 (1982)CrossRefMATHGoogle Scholar
  32. 32.
    Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates (in Russian). Dokl. Akad. Nauk. SSSR 140, 326–329 (1961)Google Scholar
  33. 33.
    Weis, P., Immerman, N.: Structure theorem and strict alternation hierarchy for FO2 on words. Log. Methods Comput. Sci. 5, 1–23 (2009)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lukas Fleischer
    • 1
  • Manfred Kufleitner
    • 1
    • 2
  • Alexander Lauser
    • 1
  1. 1.Formale Methoden der InformatikUniversität StuttgartGermany
  2. 2.Fakultät für InformatikTechnische Universität MünchenGermany

Personalised recommendations