Notions of Metric Dimension of Corona Products: Combinatorial and Computational Results

  • Henning Fernau
  • Juan Alberto Rodríguez-Velázquez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8476)


The metric dimension is quite a well-studied graph parameter. Recently, the adjacency metric dimension and the local metric dimension have been introduced. We combine these variants and introduce the local adjacency metric dimension. We show that the (local) metric dimension of the corona product of a graph of order n and some non-trivial graph H equals n times the (local) adjacency metric dimension of H. This strong relation also enables us to infer computational hardness results for computing the (local) metric dimension, based on according hardness results for (local) adjacency metric dimension that we also give.


(local) metric dimension (local) adjacency dimension NP-hardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailey, R.F., Meagher, K.: On the metric dimension of Grassmann graphs. Discrete Mathematics & Theoretical Computer Science 13, 97–104 (2011)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Brigham, R.C., Chartrand, G., Dutton, R.D., Zhang, P.: Resolving domination in graphs. Mathematica Bohemica 128(1), 25–36 (2003)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Buczkowski, P.S., Chartrand, G., Poisson, C., Zhang, P.: On k-dimensional graphs and their bases. Periodica Mathematica Hungarica 46(1), 9–15 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small depth circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 75–85. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Charon, I., Hudry, O., Lobstein, A.: Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard. Theoretical Computer Science 290(3), 2109–2120 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chartrand, G., Saenpholphat, V., Zhang, P.: The independent resolving number of a graph. Mathematica Bohemica 128(4), 379–393 (2003)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Colbourn, C.J., Slater, P.J., Stewart, L.K.: Locating dominating sets in series parallel networks. Congressus Numerantium 56, 135–162 (1987)MathSciNetGoogle Scholar
  8. 8.
    Crowston, R., Gutin, G., Jones, M., Saurabh, S., Yeo, A.: Parameterized study of the test cover problem. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 283–295. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Díaz, J., Pottonen, O., Serna, M.J., van Leeuwen, E.J.: On the complexity of metric dimension. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 419–430. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Feng, M., Wang, K.: On the metric dimension of bilinear forms graphs. Discrete Mathematics 312(6), 1266–1268 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Frucht, R., Harary, F.: On the corona of two graphs. Aequationes Mathematicae 4, 322–325 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  13. 13.
    Guo, J., Wang, K., Li, F.: Metric dimension of some distance-regular graphs. Journal of Combinatorial Optimization, 1–8 (2012)Google Scholar
  14. 14.
    Gutin, G., Muciaccia, G., Yeo, A.: (non-)existence of polynomial kernels for the test cover problem. Information Processing Letters 113(4), 123–126 (2013)Google Scholar
  15. 15.
    Hammack, R., Imrich, W., Klavžar, S.: Handbook of product graphs. Discrete Mathematics and its Applications, 2nd edn. CRC Press (2011)Google Scholar
  16. 16.
    Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combinatoria 2, 191–195 (1976)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of metric dimension. In: Proceedings of the 28th IEEE Conference on Computational Complexity (CCC 2013), pp. 266–276. IEEE (2013)Google Scholar
  18. 18.
    Haynes, T.W., Henning, M.A., Howard, J.: Locating and total dominating sets in trees. Discrete Applied Mathematics 154(8), 1293–1300 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Iswadi, H., Baskoro, E.T., Simanjuntak, R.: On the metric dimension of corona product of graphs. Far East Journal of Mathematical Sciences 52(2), 155–170 (2011)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Jannesari, M., Omoomi, B.: The metric dimension of the lexicographic product of graphs. Discrete Mathematics 312(22), 3349–3356 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Johnson, M.: Structure-activity maps for visualizing the graph variables arising in drug design. Journal of Biopharmaceutical Statistics 3(2), 203–236 (1993), pMID: 8220404Google Scholar
  23. 23.
    Johnson, M.A.: Browsable structure-activity datasets. In: Carbó-Dorca, R., Mezey, P. (eds.) Advances in Molecular Similarity, pp. 153–170. JAI Press Inc., Stamford (1998)Google Scholar
  24. 24.
    Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in graphs. IEEE Transactions on Information Theory 44(2), 599–611 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Applied Mathematics 70, 217–229 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Laifenfeld, M., Trachtenberg, A.: Identifying codes and covering problems. IEEE Transactions on Information Theory 54(9), 3929–3950 (2008)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Computing 11, 329–343 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential Time Hypothesis. EATCS Bulletin 105, 41–72 (2011)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Okamoto, F., Phinezy, B., Zhang, P.: The local metric dimension of a graph. Mathematica Bohemica 135(3), 239–255 (2010)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Rodríguez-Velázquez, J.A., Fernau, H.: On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. Tech. Rep. arXiv:1309.2275 [math.CO],, Cornell University (2013)Google Scholar
  31. 31.
    Rodríguez-Velázquez, J.A., Barragán-Ramírez, G.A., Gómez, C.G.: On the local metric dimension of corona product graph (2013) (submitted) Google Scholar
  32. 32.
    Saputro, S., Simanjuntak, R., Uttunggadewa, S., Assiyatun, H., Baskoro, E., Salman, A., Bača, M.: The metric dimension of the lexicographic product of graphs. Discrete Mathematics 313(9), 1045–1051 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Slater, P.J.: Leaves of trees. Congressus Numerantium 14, 549–559 (1975)MathSciNetGoogle Scholar
  34. 34.
    Suomela, J.: Approximability of identifying codes and locating-dominating codes. Information Processing Letters 103(1), 28–33 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Yero, I.G., Kuziak, D., Rodríquez-Velázquez, J.A.: On the metric dimension of corona product graphs. Computers & Mathematics with Applications 61(9), 2793–2798 (2011)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Henning Fernau
    • 1
  • Juan Alberto Rodríguez-Velázquez
    • 2
  1. 1.FB 4-Abteilung InformatikwissenschaftenUniversität TrierTrierGermany
  2. 2.Universitat Rovira i VirgiliTarragonaSpain

Personalised recommendations