Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

Abstract

Continuous-time Markov chainsContinuous-time Markov chain (CTMCs)CTMC seealso Continuous-time Markov chain Markov chain seealso Continuous-time Markov chain are a class of stochastic processes with a discrete state space in which the time between transitions follows an exponential distribution. In this section, we first provide the basic definitions for CTMCs and notations associated with this model. We then proceed with an explanation of the basic concepts for phase-type distributions (PHDs) and the analysis of such models. For theoretical details about CTMCs and related stochastic processes we refer to the literature [151].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As mentioned in Sect. 2.1.2 we assume that the point mass at zero, i.e., the probability of starting in the absorbing state is 0. If the absorbing state may have an initial probability greater than zero the number of independent parameters increases to 2n and the matrix representation has n 2 + n parameters.

  2. 2.

    If the case that \(\boldsymbol{{\pi }}^{(A)}(n + 1) = 0\), i.e., there is no start in the absorbing state, the random variable X (A) is strictly positive. Then the initial probability vector is given by \(\boldsymbol{{\pi }}^{(C)} = {[\boldsymbol{\pi }}^{(A)},\boldsymbol{ 0}]\) where \(\boldsymbol{0}\) is the row m-vector of 0’s.

References

  1. Bobbio, A., Horváth, A., Scarpa, M., Telek, M.: Acyclic discrete phase type distributions: properties and a parameter estimation algorithm. Perform. Eval. 54(1), 1–32 (2003)

    Article  Google Scholar 

  2. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–75 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buchholz, P., Telek, M.: Stochastic Petri nets with matrix exponentially distributed firing times. Perform. Eval. 67(12), 1373–1385 (2010)

    Article  Google Scholar 

  4. Buchholz, P., Telek, M.: On minimal representations of rational arrival processes. Ann. Oper. Res. 202(1), 35–58 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cox, D.R.: A use of complex probabilities in the theory of stochastic processes. Math. Proc. Camb. Phil. Soc. 51, 313–319 (1955)

    Article  MATH  Google Scholar 

  6. Cumani, A.: On the canonical representation of homogeneous Markov processes modeling failure-time distributions. Micorelectron. Reliab. 22(3), 583–602 (1982)

    Article  MathSciNet  Google Scholar 

  7. Dayar, T.: Analyzing Markov Chains Using Kronecker Products. Briefs in Mathematics. Springer, New York (2012)

    Book  MATH  Google Scholar 

  8. Erlang, A.K.: Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges. Elektrotkeknikeren 13, 5–13 (1917)

    Google Scholar 

  9. Fackrell, M.: Characterization of matrix-exponential distributions. Ph.D. thesis, School of Applied Mathematics, The University of Adelaide (2003)

    Google Scholar 

  10. Fang, Y.: Hyper-Erlang distribution model and its application in wireless mobile networks. Wirel. Netw. 7(3), 211–219 (2001)

    Article  MATH  Google Scholar 

  11. He, Q.M., Zhang, H.: A note on unicyclic representations of phase type distributions. Stoch. Model. 21, 465–483 (2005)

    Article  MATH  Google Scholar 

  12. He, Q.M., Zhang, H.: On matrix exponential distributions. Adv. Appl. Probab. 39(1), 271–292 (2007)

    Article  MATH  Google Scholar 

  13. Horváth, G., Telek, M.: On the canonical representation of phase type distributions. Perform. Eval. 66, 396–409 (2009)

    Article  Google Scholar 

  14. Kemeny, J.G., Snell, J.L.: Finite Markov Chains, repr edn. University Series in Undergraduate Mathematics. VanNostrand, New York (1969)

    Google Scholar 

  15. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability. Society for Industrial and Applied Mathematics, Philadelphia (1987)

    Google Scholar 

  16. Lipsky, L.: Queueing Theory: A Linear Algebraic Approach. Springer, New York (2008)

    Google Scholar 

  17. Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1–2), 85–100 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Maier, R.S., O’Cinneide, C.A.: A closure characterisation of phase-type distributions. J. Appl. Probab. 29(1), 92–103 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (2004)

    Google Scholar 

  20. Mocanu, S., Commault, C.: Sparse representations of phase-type distributions. Stoch. Model. 15, 759–778 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Neuts, M.F.: A versatile Markovian point process. J. Appl. Probab. 16, 764–779 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  22. Neuts, M.F.: Matrix-geometric solutions in stochastic models. Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  23. Nielsen, B.F.: Lecture notes on phase-type distributions for 02407 stochastic processes. http://www2.imm.dtu.dk/courses/02407/ (2012)

  24. O’Cinneide, C.A.: On non-uniqueness of representations of phase-type distributions. Stoch. Model. 5, 247–259 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. O’Cinneide, C.A.: Characterization of phase-type distributions. Stoch. Model. 6, 1–57 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. O’Cinneide, C.A.: Phase type distributions and invariant polytopes. Adv. Appl. Prob. 23, 515–535 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. O’Cinneide, C.A.: Phase-type distributions: open problems and a few properties. Stoch. Model. 15(4), 731–757 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  29. Telek, M., Horváth, G.: A minimal representation of Markov arrival processes and a moments matching method. Perform. Eval. 64(9–12), 1153–1168 (2007)

    Article  Google Scholar 

  30. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer Science Applications, 2nd edn. Wiley, Chichester (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Peter Buchholz, Jan Kriege, Iryna Felko

About this chapter

Cite this chapter

Buchholz, P., Kriege, J., Felko, I. (2014). Phase-Type Distributions. In: Input Modeling with Phase-Type Distributions and Markov Models. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-06674-5_2

Download citation

Publish with us

Policies and ethics