Skip to main content

Neutron Scattering of Proton-Conducting Ceramics

  • Chapter
  • First Online:
Neutron Applications in Materials for Energy

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

This chapter aims to demonstrate the important role that neutron scattering now plays in advancing the current understanding of the basic properties of proton-conducting ceramic separator-materials for future intermediate-temperature fuel cells. In particular, the breadth of contemporary neutron scattering work on proton-conducting perovskite-type oxides, hydrated alkali thio-hydroxogermanates, solid acids, and gallium-based oxides, is highlighted to illustrate the range of information that can be obtained. Crucial materials properties that are examined include crystal structure, proton sites, hydrogen bonding interactions, proton dynamics, proton concentrations, and nanoionics. Furthermore, the prospectives for future neutron studies within this field, particularly in view of the latest developments of neutron methods and the advent of new sources and their combination with other techniques, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To ensure that the total internal resistance (electrolyte + electrodes) of a fuel cell is sufficiently small, the target value for the areal specific-resistivity of the electrolyte is set at 0.15 \(\Omega\)cm\(^{2}\). Oxide films can be reliably produced using conventional ceramic fabrication routes at thicknesses down to ~15 \(\upmu\)m. It follows that the specific conductivity of the electrolyte must exceed 0.01 Scm\(^{ - 1}\) [1].

  2. 2.

    \(t_{\text{G}}\) = (\(R_{\text{A}}\) + \(R_{\text{O}}\))/\(\sqrt 2\)(\(R_{\text{B}} + R_{\text{O}}\)), where \(R_{\text{A}}\) is the ionic radius of the \(A\) ion, \(R_{\text{B}}\) is the ionic radius of the \(B\) ion, and \(R_{\text{O}}\) is the ionic radius of oxygen [25].

  3. 3.

    Assuming that the two-state model is true and the proton spends an average time, \(t_{1}\), in the defect-free region and a time in a trap, \(t_{1}\) + \(t_{0}\), then the diffusivity is scaled by a factor, \(t_{1}\)/(\(t_{1}\) + \(t_{0}\)) [32]. Increasing the concentration of traps then leads to a decrease of \(t_{1}\). It implies that in the two-state model the diffusivity depends on the concentration of traps but not on the activation energy.

References

  1. B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001)

    Article  Google Scholar 

  2. D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Chem. Soc. Rev. 37, 1568 (2008)

    Article  Google Scholar 

  3. A. Orera, P.R. Slater, Chem. Mater. 22, 675 (2010)

    Article  Google Scholar 

  4. A.J. Jacobson, Chem. Mater. 22, 660 (2010)

    Article  Google Scholar 

  5. J.A. Kilner, Faraday Discuss. 134, 9 (2007)

    Article  Google Scholar 

  6. V.V. Kharton, F.M.B. Marques, A. Atkinson, Solid State Ionics 174, 135 (2004)

    Article  Google Scholar 

  7. H.L. Tuller, Phys. Chem. Chem. Phys. 11, 3023 (2009)

    Article  Google Scholar 

  8. N.Q. Minh, Solid State Ionics 174, 271 (2004)

    Article  Google Scholar 

  9. J.B. Goodenough, Annu. Rev. Mater. Res. 33, 91 (2003)

    Article  Google Scholar 

  10. L. Carrette, K.A. Friedrich, U. Stimming, ChemPhysChem 1, 162 (2000)

    Article  Google Scholar 

  11. J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (Wiley, new York, 2003)

    Google Scholar 

  12. A. Weber, E. Ivers-Tiffée, J. Power Sources 127, 273 (2004)

    Article  Google Scholar 

  13. K.D. Kreuer, J. Membr. Sci. 185, 29 (2001)

    Article  Google Scholar 

  14. E. Traversa, Electrochem. Soc. Interface 18, 49 (2009)

    Google Scholar 

  15. K.D. Kreuer, ChemPhysChem 3, 771 (2002)

    Article  Google Scholar 

  16. S. Poling, C. Nelson, S.W. Martin, Chem. Mater. 17, 1728 (2005)

    Article  Google Scholar 

  17. M. Karlsson, Dalton Trans. 42(2), 317 (2013)

    Article  MathSciNet  Google Scholar 

  18. H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics 3–4, 359 (1981)

    Article  Google Scholar 

  19. K.C. Liang, A.S. Nowick, Solid State Ionics 61, 77 (1993)

    Article  Google Scholar 

  20. K.C. Liang, Y. Du, A.S. Nowick, Solid State Ionics 69, 117 (1994)

    Article  Google Scholar 

  21. H.G. Bohn, T. Schober, T. Mono, W. Shilling, Solid State Ionics 117, 219 (1999)

    Article  Google Scholar 

  22. Y. Larring, T. Norby, Solid State Ionics 77, 147 (1995)

    Article  Google Scholar 

  23. T. Shimura, M. Kumori, H. Iwahara, Solid State Ionics 86–88, 685 (1996)

    Article  Google Scholar 

  24. T. Omata, K. Okuda, S. Tsugimoto, S. Otsuka-Yao-Matsuo, Solid State Ionics 104, 249 (1997)

    Article  Google Scholar 

  25. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926)

    Article  Google Scholar 

  26. K.D. Kreuer, Ann. Rev. Mater. Res. 33, 333 (2003)

    Article  Google Scholar 

  27. F.A. Kröger, H.J. Vink, Solid State Physics: Advances in Research and Applications (Academic Press, New York, 1956)

    Google Scholar 

  28. W. MĂĽnch, G. Seifert, K.D. Kreuer, J. Maier, Solid State Ionics 97, 39 (1997)

    Article  Google Scholar 

  29. K.D. Kreuer, W. Munch, U. Traub, J. Maier, Ber. Bunsenges. Phys. Chem. 102, 552 (1998)

    Article  Google Scholar 

  30. W. Münch, G. Seifert, K.D. Kreuer, J. Maier, Solid State Ionics 86–88, 647 (1996)

    Article  Google Scholar 

  31. F. Shimojo, K. Hoshino, H. Okazaki, J. Phys. Soc. Jpn. 66, 8 (1997)

    Article  Google Scholar 

  32. R. Hempelmann, C. Karmonik, T. Matzke, M. Cappadonia, U. Stimming, T. Springer, M.A. Adams, Solid State Ionics 77, 152 (1995)

    Article  Google Scholar 

  33. T. Matzke, U. Stimming, C. Karmonik, M. Soetramo, R. Hempelmann, F. Güthoff, Solid State Ionics 86–88, 621 (1996)

    Article  Google Scholar 

  34. M.S. Islam, R.A. Davies, J.D. Gale, Chem. Mater. 13, 2049 (2001)

    Article  Google Scholar 

  35. H.G. Bohn, T. Schober, J. Am. Ceram. Soc. 83, 768 (2000)

    Article  Google Scholar 

  36. P. Babilo, S.M. Haile, J. Am. Ceram. Soc. 88, 2362 (2005)

    Article  Google Scholar 

  37. F.M.M. Snijkers, A. Buekenhoudt, J. Cooymans, J.J. Luyten, Scripta Mater. 50, 655 (2004)

    Article  Google Scholar 

  38. P. Babilo, T. Uda, S.M. Haile, J. Mater. Res. 22, 1322 (2007)

    Article  Google Scholar 

  39. S. Tao, J.T.S. Irvine, Adv. Mat. 18, 1581 (2006)

    Article  Google Scholar 

  40. N. Ito, H. Matsumoto, Y. Kawasaki, S. Okada, T. Ishihara, Solid State Ionics 179, 324 (2008)

    Article  Google Scholar 

  41. S. Imashuku, T. Uda, Y. Nose, K. Kishida, S. Harada, H. Inui, Y. Awakura, J. Electrochem. Soc. 155, B581 (2008)

    Article  Google Scholar 

  42. K.S. Knight, Solid State Ionics 127, 43 (2000)

    Article  Google Scholar 

  43. N. Sata, K. Hiramotom, M. Ishigame, S. Hosoya, N. Niimura, S. Shin, Phys. Rev. B 54, 15795 (1996)

    Article  Google Scholar 

  44. I. Sosnowska, R. Prezenioslo, W. Schafer, W. Kockelmann, R. Hempelmann, K. Wysocki, J. Alloy Compd. 328, 226 (2001)

    Article  Google Scholar 

  45. E. Kendrick, K.S. Knight, M.S. Islam, P.R. Slater, Solid State Ionics 178, 943 (2007)

    Article  Google Scholar 

  46. I. Ahmed, C.S. Knee, M. Karlsson, S.G. Eriksson, P.F. Henry, A. Matic, D. Engberg, L. Börjesson, J. Alloy Compd. 450, 103 (2008)

    Article  Google Scholar 

  47. A.K. Azad, J.T.S. Irvine, Chem. Mater. 21, 215 (2009)

    Article  Google Scholar 

  48. M. Karlsson, M.E. Björketun, P.G. Sundell, A. Matic, G. Wahnström, D. Engberg, L. Börjesson, I. Ahmed, S.G. Eriksson, P. Berastegui, Phys. Rev. B 72, 1 (2005)

    Google Scholar 

  49. P. Berastegui, S. Hull, F.J. GarcĂ­a-GarcĂ­a, S.-G. Eriksson, J. Solid State Chem. 164, 119 (2002)

    Article  Google Scholar 

  50. L. Malavasi, H.J. Kim, T. Proffen, J. Appl. Phys. 9, 2309 (2008)

    Google Scholar 

  51. L. Malavasi, H.J. Kim, T. Proffen, J. Appl. Phys. 105, 123519 (2009)

    Article  Google Scholar 

  52. K.D. Kreuer, S. Adams, W. MĂĽnch, A. Fuchs, U. Klock, J. Maier, Solid State Ionics 145, 295 (2001)

    Article  Google Scholar 

  53. C. Karmonik, T.J. Udovic, R.L. Paul, J.J. Rush, K. Lind, R. Hempelmann, Solid State Ionics 109, 207 (1998)

    Article  Google Scholar 

  54. T. Yildrim, B. Reisner, T.J. Udovic, D.A. Neumann, Solid State Ionics 145, 429 (2001)

    Article  Google Scholar 

  55. M. Karlsson, A. Matic, S.F. Parker, I. Ahmed, L. Börjesson, S.G. Eriksson, Phys. Rev. B 77, 104302 (2008)

    Article  Google Scholar 

  56. M. Karlsson, A. Matic, C.S. Knee, I. Ahmed, L. Börjesson, S.G. Eriksson, Chem. Mater. 20, 3480 (2008)

    Article  Google Scholar 

  57. M.E. Björketun, P.G. Sundell, G. Wahnström, D. Engberg, Solid State Ionics 176, 3035 (2005)

    Article  Google Scholar 

  58. G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  59. M. Pionke, T. Mono, W. Schweika, T. Springer, H. Schober, Solid State Ionics 97, 497 (1997)

    Article  Google Scholar 

  60. A. Braun, S. Duval, P. Ried, J. Embs, F. Juranyi, T. Strässle, U. Stimming, R. Hempelmann, P. Holtappels, T. Graule, J. Appl. Electrochem. 39, 262103 (2009)

    Article  Google Scholar 

  61. B. GroĂź, C. Beck, F. Meyer, T. Krajewski, R. Hempelmann, H. Altgeld, Solid State Ionics 145, 325 (2001)

    Article  Google Scholar 

  62. D. Wilmer, T. Seydel, K.D. Kreuer, Mater. Res. Soc. Proc. 972, 15 (2007)

    Google Scholar 

  63. P. Colomban, A. Slodszyk, D. Lamago, G. Andre, O. Zaafrani, O. Lacroix, S. Willemin, B. Sala, J. Phys. Soc. Jpn. 79, 1 (2010)

    Article  Google Scholar 

  64. M. Karlsson, A. Matic, D. Engberg, M.E. Björketun, M.M. Koza, I. Ahmed, G. Wahnström, P. Berastegui, L. Börjesson, S.G. Eriksson, Solid State Ionics 180, 22 (2009)

    Article  Google Scholar 

  65. M. Karlsson, D. Engberg, M.E. Björketun, A. Matic, G. Wahnström, P.G. Sundell, P. Berastegui, I. Ahmed, P. Falus, B. Farago, L. Börjesson, S. Eriksson, Chem. Mater. 22, 740 (2010)

    Article  Google Scholar 

  66. R. Hempelmann, M. Soetratmo, O. Hartmann, R. Wäppling, Solid State Ionics 107, 269 (1998)

    Article  Google Scholar 

  67. R.A. Davies, M.S. Islam, J.D. Gale, Solid State Ionics 126, 323 (1999)

    Article  Google Scholar 

  68. M.S. Islam, P.R. Slater, J.R. Tolchard, T. Dinges, Dalton Trans. 3061 (2004)

    Google Scholar 

  69. M.E. Björketun, P.G. Sundell, G. Wahnström, Faraday Discuss. 134, 247 (2007)

    Article  Google Scholar 

  70. M.E. Björketun, P.G. Sundell, G. Wahnström, Phys. Rev. B: Condens. Matter 76, 054307 (2007)

    Article  Google Scholar 

  71. Y. Yamazaki, F. Blanc, Y. Okuyama, L. Buannic, J.C. Lucio-Vega, C.P. Grey, S.M. Haile, Nature Mater. 12, 647 (2013)

    Article  Google Scholar 

  72. P. Haro-Gonzáles, M. Karlsson, S. Gaita, C.S. Knee, M. Bettinelli, Solid State Ionics 247–248, 94 (2013)

    Article  Google Scholar 

  73. K.D. Kreuer, W. MĂĽnch, M. Ise, T. He, A. Fuchs, U. Traub, J. Maier, Ber. Bunsenges. Phys. Chem. 101, 1344 (1997)

    Google Scholar 

  74. K.D. Kreuer, Solid State Ionics 125, 285 (1999)

    Article  Google Scholar 

  75. C.Y. Jones, J. Wu, L. Li, S.M. Haile, J. Appl. Phys. 97, 114908 (2005)

    Article  Google Scholar 

  76. F. Schönberger, E. Kendrick, M.S. Islam, P.R. Slater, Solid State Ionics 176, 2951 (2005)

    Article  Google Scholar 

  77. K. Amezawa, H. Maekawa, Y. Tomii, N. Yamamoto, Solid State Ionics 145, 233 (2001)

    Article  Google Scholar 

  78. N. Kitamura, K. Amezawa, Y. Tomii, N. Yakamoto, Solid State Ionics 162–163, 161 (2003)

    Article  Google Scholar 

  79. R. Haugsrud, T. Norby, Nat. Mater. 5, 193 (2006)

    Article  Google Scholar 

  80. A. Magraso, C. Frontera, D. Marrero-López, P.Núñez, Dalton Trans. 10, 283 (2009)

    Google Scholar 

  81. S.M. Haile, D.A. Boysen, C.R.I. Chisholm, R.B. Merle, Nature 410, 910 (2001)

    Article  Google Scholar 

  82. S.A. Poling, C.R. Nelson, S.W. Martin, Mater. Lett. 60, 23 (2006)

    Article  Google Scholar 

  83. E. Kendrick, M.S. Islam, P.R. Slater, Solid State Ionics 176, 2975 (2005)

    Article  Google Scholar 

  84. M.C. Martin-Sedeno, D. Marrero-Lopez, E.R. Losilla, L. Leon-Reina, S. Bruque, P. Núñez, M.A.G. Aranda, Chem. Mater. 17, 5989 (2005)

    Article  Google Scholar 

  85. M. Karlsson, A. Matic, I. Panas, D.T. Bowron, S.W. Martin, C.R. Nelson, C.A. Martindale, A. Hall, L. Börjesson, Chem. Mater. 20, 6014 (2008)

    Article  Google Scholar 

  86. T. Norby, Nature 410, 877 (2001)

    Article  Google Scholar 

  87. A.I. Baranov, L.A. Shuvalov, N.M. Schagina, JETP LETT. 36, 459 (1982)

    Google Scholar 

  88. W.K. Chan, L.A. Haverkate, W.J.H. Borghols, M. Wagemaker, S.J. Picken, E.R.H. van Eck, A.P.M. Kentgens, M.R. Johnson, G.J. Kearley, F.M. Mulder, Adv. Funct. Mater. 21, 1364 (2011)

    Article  Google Scholar 

  89. E. Kendrick, J. Kendrick, K.S. Knight, M.S. Islam, P.R. Slater, Nat. Mater. 6, 871 (2007)

    Article  Google Scholar 

  90. E. Kendrick, P.R. Slater, University of Surrey Chemistry Electronic Publication Library, http://epubs.surrey.ac.uk/1685 (2010)

  91. E. Kendrick, K.S. Knight, M.S. Islam, P.R. Slater, J. Mater. Chem. 20, 10412 (2010)

    Article  Google Scholar 

  92. R.L. McGreevy, L. Pusztai, Mol. Simul. 1, 359 (1988)

    Article  Google Scholar 

  93. R.L. McGreevy, J. Phys.: Condens. Mat. 13, 4111 (2001)

    Google Scholar 

  94. S.T. Norberg, S. Hull, I. Ahmed, S.G. Eriksson, D. Marrocchelli, P.A. Madden, P. Li, J.T.S. Irvine, Chem. Mater. 23, 1356 (2011)

    Article  Google Scholar 

  95. D. Marrocchelli, P.A. Madden, S.T. Norberg, S. Hull, Chem. Mater. 23, 1365 (2011)

    Article  Google Scholar 

  96. C.T. Chen, C.E. Danel, S. Kim, J. Mater. Chem. 21, 5435 (2011)

    Article  Google Scholar 

  97. M. Shirpour, R. Merkle, C.T. Lin, J. Maier, Phys. Chem. Chem. Phys. 14, 730 (2012)

    Article  Google Scholar 

  98. F.G. Kinyanjui, S.T. Norberg, I. Ahmed, S.G. Eriksson, S. Hull, Solid State Ionics 225, 312 (2012)

    Article  Google Scholar 

  99. A. Abragam, M. Goldman, Nuclear Magnetism, Order and Disorder (Oxford University Press, Oxford, 1961)

    Google Scholar 

  100. F.M. Piegsa, M. Karlsson, B. van den Brandt, C.J. Carlile, E.M. Forgan, P. Hautle, J.A. Konter, G.J. McIntyre, O. Zimmer, J. Appl. Cryst. 46, 30 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Swedish Research Council (Grant no. 2011-4887) is gratefully acknowledged. P. Slater is thanked for the provision of Fig. 9.18a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maths Karlsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karlsson, M. (2015). Neutron Scattering of Proton-Conducting Ceramics. In: Kearley, G., Peterson, V. (eds) Neutron Applications in Materials for Energy. Neutron Scattering Applications and Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-06656-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06656-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06655-4

  • Online ISBN: 978-3-319-06656-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics