Lithium-Ion Batteries

  • Neeraj SharmaEmail author
  • Marnix Wagemaker
Part of the Neutron Scattering Applications and Techniques book series (NEUSCATT)


The effort of material scientists in the discovery, understanding, and development of Li-ion batteries largely depends on the techniques available to observe the relevant processes on the appropriate time and length scales. This chapter aims at demonstrating the role and use of different neutron-scattering techniques in the progress of Li-ion battery electrode and electrolyte properties and function. The large range in time and length scales offered by neutron-scattering techniques is highlighted. This illustrates the type of information that can be obtained, including key parameters such as crystal structure, Li-ion positions, impact of nano-particle size and defects, ionic mobility, as well as the Li-ion distribution in electrodes and at electrode-electrolyte interfaces. Special attention is directed to the development of in situ neutron-scattering techniques providing insight on the function of battery materials under realistic conditions, a promising direction for future battery research.


Neutron Diffraction Lower Unoccupied Molecular Orbital Solid Electrolyte Interface Inelastic Neutron Scatter Neutron Powder Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.M. Tarascon, M. Armand, Nature 414, 359 (2001)Google Scholar
  2. 2.
    M. Armand, J.M. Tarascon, Nature 451, 652 (2008)Google Scholar
  3. 3.
    M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater. 10, 725 (1998)Google Scholar
  4. 4.
    J.B. Goodenough, Y. Kim, Chem. Mater. 22, 587 (2010)Google Scholar
  5. 5.
    B.L. Ellis, K.T. Lee, L.F. Nazar, Chem. Mater. 22, 691 (2010)Google Scholar
  6. 6.
    M.S. Whittingham, MRS Bull. 33, 411 (2008)Google Scholar
  7. 7.
    M. Gaberscek, J. Jamnik, Solid State Ionics 177, 2647 (2006)Google Scholar
  8. 8.
    J. Jamnik, R. Dominko, B. Erjavec, M. Remskar, A. Pintar, M. Gaberscek, Adv Mater 21, 2715 (2009)Google Scholar
  9. 9.
    C. Fongy, S. Jouanneau, D. Guyomard, J.C. Badot, B. Lestriez, J. Electrochem. Soc. 157, A1347 (2010)Google Scholar
  10. 10.
    C. Fongy, A.C. Gaillot, S. Jouanneau, D. Guyomard, B. Lestriez, J. Electrochem. Soc. 157, A885 (2010)Google Scholar
  11. 11.
    D.P. Singh, F.M. Mulder, A.M. Abdelkader, M. Wagemaker, Adv Energy Mater 3, 572 (2013)Google Scholar
  12. 12.
    D.P. Singh, F.M. Mulder, M. Wagemaker, Electrochem. Commun. 35, 124 (2013)Google Scholar
  13. 13.
    M.M. Thackeray, J. Electrochem. Soc. 142, 2558 (1995)Google Scholar
  14. 14.
    A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997)Google Scholar
  15. 15.
    U. Kasavajjula, C.S. Wang, A.J. Appleby, J. Power Sources 163, 1003 (2007)Google Scholar
  16. 16.
    J.R. Szczech, S. Jin, Energy Environ. Sci. 4, 56 (2011)Google Scholar
  17. 17.
    B.L. Ellis, K. Town, L.F. Nazar, Electrochim. Acta 84, 145 (2012)Google Scholar
  18. 18.
    T. Ohzuku, Y. Makimura, Chem. Lett. 7, 642 (2001)Google Scholar
  19. 19.
    H. Kawai, M. Nagata, H. Tukamoto, A.R. West, J. Power Sources 81, 67 (1999)Google Scholar
  20. 20.
    K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Power Sources 68, 604 (1997)Google Scholar
  21. 21.
    K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Electrochem. Soc. 143, 1607 (1996)Google Scholar
  22. 22.
    Y. Xia, Q. Zhang, H. Wang, H. Nakamura, H. Noguchi, M. Yoshio, Electrochim. Acta 52, 4708 (2007)Google Scholar
  23. 23.
    N. Ravet, J.B. Goodenough, S. Besner, M. Simoneau, P. Hovington, M. Armand, in Improved iron based cathode material. Abstract No. 127, in Electrochemical Society Fall Meeting, Honolulu, Hawaii (Electrochemical Society, Pennington, New Jersey, 1999)Google Scholar
  24. 24.
    H. Huang, S.C. Yin, L.F. Nazar, Electrochem. Solid State Lett. 4, A170 (2001)Google Scholar
  25. 25.
    C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier, Electrochem. Solid State Lett. 9, A352 (2006)Google Scholar
  26. 26.
    F. Zhou, T. Maxisch, G. Ceder, Phys. Rev. Lett. 97, 15 (2006)Google Scholar
  27. 27.
    D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid State Lett. 7, A30 (2004)Google Scholar
  28. 28.
    V. Srinivasan, J. Newman, J. Electrochem. Soc. 151, A1517 (2004)Google Scholar
  29. 29.
    B.L. Ellis, K.T. Lee, L.F. Nazar, Chem. Mater. 22, 691 (2010)Google Scholar
  30. 30.
    J.R. Dahn, R. Fong, M.J. Spoon, Phys. Rev. B 42, 6424 (1990)Google Scholar
  31. 31.
    M. Winter, J.O. Besenhard, Electrochim. Acta 45, 31 (1999)Google Scholar
  32. 32.
    O. Mao, R.A. Dunlap, J.R. Dahn, J. Electrochem. Soc. 146, 405 (1999)Google Scholar
  33. 33.
    J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, Electrochem. Solid State Lett. 6, A194 (2003)Google Scholar
  34. 34.
    J. Yang, B.F. Wang, K. Wang, Y. Liu, J.Y. Xie, Z.S. Wen, Electrochem. Solid State Lett. 6, A154 (2003)Google Scholar
  35. 35.
    E. Ferg, R.J. Gummow, A. Dekock, M.M. Thackeray, J. Electrochem. Soc. 141, L147 (1994)Google Scholar
  36. 36.
    D. Deng, M.G. Kim, J.Y. Lee, J. Cho, Energy Environ. Sci. 2, 818 (2009)Google Scholar
  37. 37.
    M. Wagemaker, F.M. Mulder, Acc. Chem. Res. 46, 1206 (2013)Google Scholar
  38. 38.
    A.R. Armstrong, C. Lyness, P.M. Panchmatia, M.S. Islam, P.G. Bruce, Nat. Mater. 10, 223 (2011)Google Scholar
  39. 39.
    J. Maier, Nat. Mater. 4, 805 (2005)Google Scholar
  40. 40.
    A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005)Google Scholar
  41. 41.
    N. Meethong, H.Y.S. Huang, W.C. Carter, Y.M. Chiang, Electrochem. Solid State Lett. 10, A134 (2007)Google Scholar
  42. 42.
    G. Sudant, E. Baudrin, D. Larcher, J.M. Tarascon, J. Mater. Chem. 15, 1263 (2005)Google Scholar
  43. 43.
    W.J.H. Borghols, M. Wagemaker, U. Lafont, E.M. Kelder, F.M. Mulder, J. Am. Chem. Soc. 131, 17786 (2009)Google Scholar
  44. 44.
    G. Kobayashi, S.I. Nishimura, M.S. Park, R. Kanno, M. Yashima, T. Ida, A. Yamada, Adv. Funct. Mater. 19, 395 (2009)Google Scholar
  45. 45.
    M. Wagemaker, W.J.H. Borghols, F.M. Mulder, J. Am. Chem. Soc. 129, 4323 (2007)Google Scholar
  46. 46.
    M. Wagemaker, D.P. Singh, W.J.H. Borghols, U. Lafont, L. Haverkate, V.K. Peterson, F.M. Mulder, J. Am. Chem. Soc. 133, 10222 (2011)Google Scholar
  47. 47.
    B. Kang, G. Ceder, Nature 458, 190 (2009)Google Scholar
  48. 48.
    Y.S. Hu, L. Kienle, Y.G. Guo, J. Maier, Adv. Mater. 18, 1421 (2006)Google Scholar
  49. 49.
    X.P. Gao, Y. Lan, H.Y. Zhu, J.W. Liu, Y.P. Ge, F. Wu, D.Y. Song, Electrochem. Solid State Lett. 8, A26 (2005)Google Scholar
  50. 50.
    A.R. Armstrong, G. Armstrong, J. Canales, R. Garcia, P.G. Bruce, Adv. Mater. 17, 862 (2005)Google Scholar
  51. 51.
    P. Balaya, H. Li, L. Kienle, J. Maier, Adv. Funct. Mater. 13, 621 (2003)Google Scholar
  52. 52.
    J.R. Dahn, Phys. Rev. B 44, 9170 (1991)Google Scholar
  53. 53.
    O. Dolotko, A. Senyshyn, M.J. Muehlbauer, K. Nikolowski, F. Scheiba, H. Ehrenberg, J. Electrochem. Soc. 159, A2082 (2012)Google Scholar
  54. 54.
    A. Senyshyn, O. Dolotko, M.J. Muehlbauer, K. Nikolowski, H. Fuess, H. Ehrenberg, J. Electrochem. Soc. 160, A3198 (2013)Google Scholar
  55. 55.
    R.J. Cava, D.W. Murphy, S. Zahurak, A. Santoro, R.S. Roth, J. Solid State Chem. 53, 64 (1984)Google Scholar
  56. 56.
    M. Wagemaker, G.J. Kearley, A.A. van Well, H. Mutka, F.M. Mulder, J. Am. Chem. Soc. 125, 840 (2003)Google Scholar
  57. 57.
    D.W. Murphy, M. Greenblatt, S.M. Zahurak, R.J. Cava, J.V. Waszczak, G.W. Hull, R.S. Hutton, Rev. Chim. Miner. 19, 441 (1982)Google Scholar
  58. 58.
    W.J.H. Borghols, M. Wagemaker, U. Lafont, E.M. Kelder, F.M. Mulder, Chem. Mater. 20, 2949 (2008)Google Scholar
  59. 59.
    A.R. Armstrong, C. Arrouvel, V. Gentili, S.C. Parker, M.S. Islam, P.G. Bruce, Chem. Mater. 22, 6426 (2010)Google Scholar
  60. 60.
    A. Deschanv, B. Raveau, Z. Sekkal, Mater. Res. Bull. 6, 699 (1971)Google Scholar
  61. 61.
    D.C. Johnston, J. Low Temp. Phys. 25, 145 (1976)Google Scholar
  62. 62.
    K.M. Colbow, J.R. Dahn, R.R. Haering, J. Power Sources 26, 397 (1989)Google Scholar
  63. 63.
    T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 142, 1431 (1995)Google Scholar
  64. 64.
    A. Deschanv, B. Raveau, Z. Sekkal, Mater. Res. Bull. 6, 699 (1971)Google Scholar
  65. 65.
    S. Scharner, W. Weppner, P. Schmid-Beurmann, J. Electrochem. Soc. 146, 857 (1999)Google Scholar
  66. 66.
    G. Du, N. Sharma, V.K. Peterson, J.A. Kimpton, D. Jia, Z. Guo, Adv. Funct. Mater. 21, 3990 (2011)Google Scholar
  67. 67.
    L. Kavan, M. Kalbac, M. Zukalova, I. Exnar, V. Lorenzen, R. Nesper, M. Graetzel, Chem. Mater. 16, 477 (2004)Google Scholar
  68. 68.
    M.A. Reddy, M.S. Kishore, V. Pralong, U.V. Varadaraju, B. Raveau, Electrochem. Solid State Lett. 10, A29 (2007)Google Scholar
  69. 69.
    M. Zukalova, M. Kalbac, L. Kavan, I. Exnar, M. Graetzel, Chem. Mater. 17, 1248 (2005)Google Scholar
  70. 70.
    V. Gentili, S. Brutti, L.J. Hardwick, A.R. Armstrong, S. Panero, P.G. Bruce, Chem. Mater. 24, 4468 (2012)Google Scholar
  71. 71.
    W.J.H. Borghols, M. Wagemaker, U. Laffont, E.M. Kelder, F.M. Mulder, Chem. Mater. 20, 2949 (2008)Google Scholar
  72. 72.
    N.-S. Choi, J.-S. Kim, R.-Z. Yin, S.-S. Kim, Mater. Chem. Phys. 116, 603 (2009)Google Scholar
  73. 73.
    R.J. Gummow, M.M. Thackeray, Solid State Ionics 53, 681 (1992)Google Scholar
  74. 74.
    R.J. Gummow, M.M. Thackeray, W.I.F. David, S. Hull, Mater. Res. Bull. 27, 327 (1992)Google Scholar
  75. 75.
    M. Carewska, S. Scaccia, F. Croce, S. Arumugam, Y. Wang, S. Greenbaum, Solid State Ionics 93, 227 (1997)Google Scholar
  76. 76.
    S. Levasseur, M. Menetrier, E. Suard, C. Delmas, Solid State Ionics 128, 11 (2000)Google Scholar
  77. 77.
    S. Levasseur, M. Menetrier, Y. Shao-Horn, L. Gautier, A. Audemer, G. Demazeau, A. Largeteau, C. Delmas, Chem. Mater. 15, 348 (2003)Google Scholar
  78. 78.
    J.M. Kim, H.T. Chung, Electrochim. Acta 49, 937 (2004)Google Scholar
  79. 79.
    P.S. Whitfield, I.J. Davidson, L.M.D. Cranswick, I.P. Swainson, P.W. Stephens, Solid State Ionics 176, 463 (2005)Google Scholar
  80. 80.
    Y. Idemoto, T. Matsui, Solid State Ionics 179, 625 (2008)Google Scholar
  81. 81.
    C. Fong, B.J. Kennedy, M.M. Elcombe, Zeitschrift Fur Kristallographie 209, 941 (1994)Google Scholar
  82. 82.
    A.S. Wills, N.P. Raju, J.E. Greedan, Chem. Mater. 11, 1510 (1999)Google Scholar
  83. 83.
    J. Rodriguez-Carvajal, G. Rousse, C. Masquelier, M. Hervieu, Phys. Rev. Lett. 81, 4660 (1998)Google Scholar
  84. 84.
    R. Benedek, M.M. Thackeray, Electrochem. Solid State Lett. 9, A265 (2006)Google Scholar
  85. 85.
    H. Berg, E.M. Kelder, J.O. Thomas, J. Mater. Chem. 9, 427 (1999)Google Scholar
  86. 86.
    H. Berg, K. Goransson, B. Nolang, J.O. Thomas, J. Mater. Chem. 10, 1437 (2000)Google Scholar
  87. 87.
    M.V. Reddy, M.J. Silvister Raju, N. Sharma, P.Y. Quan, S.H. Nowshad, H.E.-C. Emmanuel, V.K. Peterson, B.V.R. Chowdari, J. Electrochem. Soc. 158, A1231 (2011)Google Scholar
  88. 88.
    Y. Liu, H. Kabbour, C.M. Brown, D.A. Neumann, C.C. Ahn, Langmuir 24, 4772 (2008)Google Scholar
  89. 89.
    M. Yonemura, A. Yamada, H. Kobayashi, M. Tabuchi, T. Kamiyama, Y. Kawamoto, R. Kanno, J. Mater. Chem. 14, 1948 (2004)Google Scholar
  90. 90.
    D. Gryffroy, R.E. Vandenberghe, J. Phys. Chem. Solids 53, 777 (1992)Google Scholar
  91. 91.
    F.G.B. Ooms, M. Wagemaker, A.A. van Well, F.M. Mulder, E.M. Kelder, J. Schoonman, J. Appl. Phys. A 74, S1089 (2002)Google Scholar
  92. 92.
    M. Wagemaker, F.G.B. Ooms, E.M. Kelder, J. Schoonman, G.J. Kearley, F.M. Mulder, J. Am. Chem. Soc. 126, 13526 (2004)Google Scholar
  93. 93.
    A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, K. Itoh, M. Yonemura, T. Kamiyama, Chem. Mater. 18, 804 (2006)Google Scholar
  94. 94.
    A. Nyten, J.O. Thomas, Solid State Ionics 177, 1327 (2006)Google Scholar
  95. 95.
    J. Xu, S.-L. Chou, M. Avdeev, M. Sale, H.-K. Liu, S.-X. Dou, Electrochim. Acta 88, 865 (2013)Google Scholar
  96. 96.
    C.-Y. Chiang, H.-C. Su, P.-J. Wu, H.-J. Liu, C.-W. Hu, N. Sharma, V.K. Peterson, H.-W. Hsieh, Y.-F. Lin, W.-C. Chou, C.-H. Lee, J.-F. Lee, B.-Y. Shew, J. Phys. Chem. C 116, 24424 (2012)Google Scholar
  97. 97.
    K.L. Harrison, C.A. Bridges, M.P. Paranthaman, C.U. Segre, J. Katsoudas, V.A. Maroni, J.C. Idrobo, J.B. Goodenough, A. Manthiram, Chem. Mater. 25, 768 (2013)Google Scholar
  98. 98.
    N. Marx, L. Croguennec, D. Carlier, A. Wattiaux, F. Le Cras, E. Suard, C. Delmas, Dalton Trans. 39, 5108 (2010)Google Scholar
  99. 99.
    B.L. Ellis, T.N. Ramesh, W.N. Rowan-Weetaluktuk, D.H. Ryan, L.F. Nazar, J. Mater. Chem. 22, 4759 (2012)Google Scholar
  100. 100.
    H. Kim, S. Lee, Y.-U. Park, H. Kim, J. Kim, S. Jeon, K. Kang, Chem. Mater. 23, 3930 (2011)Google Scholar
  101. 101.
    G. Rousse, J. Rodriguez-Carvajal, S. Patoux, C. Masquelier, Chem. Mater. 15, 4082 (2003)Google Scholar
  102. 102.
    C. Delacourt, P. Poizot, J.M. Tarascon, C. Masquelier, Nat. Mater. 4, 254 (2005)Google Scholar
  103. 103.
    C. Delacourt, J. Rodriguez-Carvajal, B. Schmitt, J.M. Tarascon, C. Masquelier, Solid State Sci. 7, 1506 (2005)Google Scholar
  104. 104.
    Y. Orikasa, T. Maeda, Y. Koyama, H. Murayama, K. Fukuda, H. Tanida, H. Arai, E. Matsubara, Y. Uchimoto, Z. Ogumi, J. Am. Chem. Soc. 135, 5497 (2013)Google Scholar
  105. 105.
    A. Yamada, H. Koizumi, S.I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Nat. Mater. 5, 357 (2006)Google Scholar
  106. 106.
    S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat. Mater. 1, 123 (2002)Google Scholar
  107. 107.
    M. Wagemaker, B.L. Ellis, D. Luetzenkirchen-Hecht, F.M. Mulder, L.F. Nazar, Chem. Mater. 20, 6313 (2008)Google Scholar
  108. 108.
    M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater, Chem. Mater. 17, 5085 (2005)Google Scholar
  109. 109.
    J.J. Chen, M.S. Whittingham, Electrochem. Commun. 8, 855 (2006)Google Scholar
  110. 110.
    S.Y. Chung, S.Y. Choi, T. Yamamoto, Y. Ikuhara, Phys. Rev. Lett. 100, 12 (2008)Google Scholar
  111. 111.
    K.M.O. Jensen, M. Christensen, H.P. Gunnlaugsson, N. Lock, E.D. Bojesen, T. Proffen, B.B. Iversen, Chem. Mater. 25, 2282 (2013)Google Scholar
  112. 112.
    P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascon, C. Masquelier, Nat. Mater. 7, 741 (2008)Google Scholar
  113. 113.
    S.-P. Badi, M. Wagemaker, B.L. Ellis, D.P. Singh, W.J.H. Borghols, W.H. Kan, D.H. Ryan, F.M. Mulder, L.F. Nazar, J. Mater. Chem. 21, 10085 (2011)Google Scholar
  114. 114.
    S.-Y. Chung, S.-Y. Choi, S. Lee, Y. Ikuhara, Phys. Rev. Lett. 108, 19 (2012)Google Scholar
  115. 115.
    F. Zhou, C.A. Marianetti, M. Cococcioni, D. Morgan, G. Ceder, Phys. Rev. B 69, 20 (2004)Google Scholar
  116. 116.
    N. Meethong, H.Y.S. Huang, S.A. Speakman, W.C. Carter, Y.M. Chiang, Adv. Funct. Mater. 17, 1115 (2007)Google Scholar
  117. 117.
    A. Yamada, H. Koizumi, S.I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Nat. Mater. 5, 357 (2006)Google Scholar
  118. 118.
    D. Burch, M.Z. Bazant, Nano Lett. 9, 3795 (2009)Google Scholar
  119. 119.
    M. Wagemaker, F.M. Mulder, A. van der Ven, Adv. Mater. 21, 1 (2009)Google Scholar
  120. 120.
    J.L. Dodd, R. Yazami, B. Fultz, Electrochem. Solid State Lett. 9, A151 (2006)Google Scholar
  121. 121.
    R. Stevens, J.L. Dodd, M.G. Kresch, R. Yazami, B. Fultz, B. Ellis, L.F. Nazar, J. Phys. Chem. B 110, 22732 (2006)Google Scholar
  122. 122.
    D.A. Cogswell, M.Z. Bazant, ACS Nano 6, 2215 (2012)Google Scholar
  123. 123.
    P. Papanek, W.A. Kamitakahara, P. Zhou, J.E. Fischer, J. Phys. Condens. Matter 13, 8287 (2001)Google Scholar
  124. 124.
    P. Zhou, P. Papanek, R. Lee, J.E. Fischer, W.A. Kamitakahara, J. Electrochem. Soc. 144, 1744 (1997)Google Scholar
  125. 125.
    G.W. Neilson, R.D. Broadbent, I. Howell, R.H. Tromp, J. Chem. Soc. Faraday Trans. 89, 2927 (1993)Google Scholar
  126. 126.
    P. Zhou, P. Papanek, C. Bindra, R. Lee, J.E. Fischer, J. Power Sources 68, 296 (1997)Google Scholar
  127. 127.
    Y. Reynier, R. Yazami, B. Fultz, J. Power Sources 119–121, 850 (2003)Google Scholar
  128. 128.
    Y. Reynier, J. Graetz, T. Swan-Wood, P. Rez, R. Yazami, B. Fultz, Phys. Rev. B 70, 174304 (2004)Google Scholar
  129. 129.
    J. Li, V.O. Garlea, J.L. Zarestky, D. Vaknin, Phys. Rev. B 73, 024410 (2006)Google Scholar
  130. 130.
    J. Li, T.B.S. Jensen, N.H. Andersen, J.L. Zarestky, W. McCallum, J.-H. Chung, J.W. Lynn, D. Vaknin, Phys. Rev. B 79, 174435 (2009)Google Scholar
  131. 131.
    J. Li, W. Tian, Y. Chen, J.L. Zarestky, J.W. Lynn, D. Vaknin, Phys. Rev. B 79, 144410 (2009)Google Scholar
  132. 132.
    C.S. Johnson, M.M. Thackeray, J.C. Nipko, C.-K. Loong, Phys. B 241–243, 1252 (1998)Google Scholar
  133. 133.
    P. Aitchison, B. Ammundsen, J. Roziere, G.R. Burns, D.J. Jones, Solid State Ionics 176, 813 (2005)Google Scholar
  134. 134.
    P. Aitchison, B. Ammundsen, T. Bell, D. Jones, J. Roziere, G. Burns, H. Berg, R. Tellgren, J. Thomas, Phys. B 276–278, 847 (2000)Google Scholar
  135. 135.
    B. Ammundsen, D.J. Jones, J. Roziere, G.R. Burns, Chem. Mater. 7, 2151 (1995)Google Scholar
  136. 136.
    B. Ammundsen, P.B. Aitchison, G.R. Burns, D.J. Jones, J. Roziere, Solid State Ionics 97, 269 (1997)Google Scholar
  137. 137.
    M.J. Ariza, D.J. Jones, J. Roziere, R. Chitrakar, K. Ooi, Chem. Mater. 18, 1885 (2006)Google Scholar
  138. 138.
    W.I. Jung, M. Nagao, C. Pitteloud, K. Itoh, A. Yamada, R. Kanno, J. Mater. Chem. 19, 800 (2009)Google Scholar
  139. 139.
    A.J.M. Schmets, G.J. Kearley, H. Mutka, I.M. de Schepper, Phys. B 350, e991 (2004)Google Scholar
  140. 140.
    C.C. Yang, S.Y. Wu, W.-H. Li, K.C. Lee, J.W. Lynn, R.S. Liu, C.H. Shen, Mater. Sci. Eng. B 95, 162 (2002)Google Scholar
  141. 141.
    L. Cristofolini, P. Facci, M.P. Fontana, G. Cicognani, A.J. Dianoux, Phys. Rev. B 61, 3404 (2000)Google Scholar
  142. 142.
    M.D. Levi, E. Markevich, D. Aurbach, J. Phys. Chem. B 109, 7420 (2005)Google Scholar
  143. 143.
    A. Borgschulte, A. Jain, A.J. Ramirez-Cuesta, P. Martelli, A. Remhof, O. Friedrichs, R. Gremaud, A. Zuttel, Faraday Discuss 151, 213 (2011)Google Scholar
  144. 144.
    F. Kargl, A. Meyer, M.M. Koza, H. Schober, Phys. Rev. B 74, 014304 (2006)Google Scholar
  145. 145.
    G.A. Eckstein, G. Eckold, W. Schmidt, H.J. Steiner, H.D. Lutz, Solid State Ionics 111, 283 (1998)Google Scholar
  146. 146.
    T. Maxisch, F. Zhou, G. Ceder, Phys. Rev. B 73, 10 (2006)Google Scholar
  147. 147.
    S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Nat. Mater. 7, 707 (2008)Google Scholar
  148. 148.
    A. Laumann, H. Boysen, M. Bremholm, K.T. Fehr, M. Hoelzel, M. Holzapfel, Chem. Mater. 23, 2753 (2011)Google Scholar
  149. 149.
    M. Wagemaker, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, J. Phys. Chem. B 113, 224 (2009)Google Scholar
  150. 150.
    N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 10, 682 (2011)Google Scholar
  151. 151.
    P.R. Rayavarapu, N. Sharma, V.K. Peterson, S. Adams, J. Solid State Electrochem. 16, 1807 (2012)Google Scholar
  152. 152.
    P.R. Rayavarapu, N. Sharma, V.K. Peterson, S. Adams, Solid State Ionics 230, 72 (2013)Google Scholar
  153. 153.
    Y. Matsuda, M. Kawashima, Y. Moriya, T. Yamada, O. Yamamuro, S. Kojima, J. Phys. Soc. Jpn. 79, 033801 (2010)Google Scholar
  154. 154.
    M. Yashima, J. Ceram. Soc. Jpn. 117, 1055 (2009)Google Scholar
  155. 155.
    M. Yashima, M. Itoh, Y. Inaguma, Y. Morii, J. Am. Chem. Soc. 127, 3491 (2005)Google Scholar
  156. 156.
    A. Attia, M. Zukalova, L. Pospisil, L. Kavan, J. Solid State Electrochem. 11, 1163 (2007)Google Scholar
  157. 157.
    N. Reeves-McLaren, R.I. Smith, A.R. West, Chem. Mater. 23, 3556 (2011)Google Scholar
  158. 158.
    M. Kamata, T. Esaka, S. Fujine, K. Yoneda, K. Kanda, Nucl. Instr. Meth. Phys. Res. A 377, 161 (1996)Google Scholar
  159. 159.
    T. Esaka, Ionics 10, 358 (2004)Google Scholar
  160. 160.
    S. Takai, K. Kurihara, K. Yoneda, S. Fujine, Y. Kawabata, T. Esaka, Solid State Ionics 171, 107 (2004)Google Scholar
  161. 161.
    S. Takai, M. Kamata, S. Fujine, K. Yoneda, K. Kanda, T. Esaka, Solid State Ionics 123, 165 (1999)Google Scholar
  162. 162.
    G. Mao, R.F. Perea, W.S. Howells, D.L. Price, M.-L. Saboungi, Nature 405, 163 (2000)Google Scholar
  163. 163.
    D. Andersson, D. Engberg, J. Swenson, C. Svanberg, W.S. Howells, L. Borjesson, J. Chem. Phys. 122, 234905 (2005)Google Scholar
  164. 164.
    F. Altorfer, W. Buhrer, I. Anderson, O. Scharpf, H. Bill, P.L. Carron, H.G. Smith, Phys. B, 180–181, 795 (1992)Google Scholar
  165. 165.
    C. Cramer, K. Funke, C. Vortkamp-Ruckert, A.J. Dianoux, Phys. A 191, 358 (1992)Google Scholar
  166. 166.
    S. Hull, T.W.D. Farlwy, W. Hayes, M.T. Hutchings, J. Nucl. Mater. 160, 125 (1988)Google Scholar
  167. 167.
    P. Vajda, F. Beuneu, G. Krexner, M. Prem, O. Blaschko, C. Maier, Nucl. Instr. Meth. Phys. Res. B 166–167, 275 (2000)Google Scholar
  168. 168.
    H. Maekawa, Y. Fujimaki, H. Shen, J. Kawamura, T. Yamamura, Solid State Ionics 177, 2711 (2006)Google Scholar
  169. 169.
    S. Ganapathy, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, M. Wagemaker, Chem. Eur. J. 17, 14811 (2011)Google Scholar
  170. 170.
    R. van de Krol, A. Goossens, J. Schoonman, J. Phys. Chem. B 103, 7151 (1999)Google Scholar
  171. 171.
    H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.E. Lindquist, J. Phys. Chem. B 101, 7710 (1997)Google Scholar
  172. 172.
    M. Wagemaker, A.P.M. Kentgens, F.M. Mulder, Nature 418, 397 (2002)Google Scholar
  173. 173.
    M. Wagemaker, R. van de Krol, A.P.M. Kentgens, A.A. van Well, F.M. Mulder, J. Am. Chem. Soc. 123, 11454 (2001)Google Scholar
  174. 174.
    K. Xu, Chem. Rev. 104, 4303 (2004)Google Scholar
  175. 175.
    P. Verma, P. Maire, P. Novak, Electrochem. Acta 55, 6332 (2010)Google Scholar
  176. 176.
    J.E. Owejan, J.P. Owejan, S.C. DeCaluwe, J.A. Dura, Chem. Mater. 24, 2133 (2012)Google Scholar
  177. 177.
    W.R. Brant, S. Schmid, G. Du, Q. Gu, N. Sharma, J. Power Sources 244, 109 (2013)Google Scholar
  178. 178.
    N. Sharma, G. Du, A.J. Studer, Z. Guo, V.K. Peterson, Solid State Ionics 199–200, 37 (2011)Google Scholar
  179. 179.
    X.-L. Wang, K. An, L. Cai, Z. Feng, S.E. Nagler, C. Daniel, K.J. Rhodes, A.D. Stoica, H.D. Skorpenske, C. Liang, W. Zhang, J. Kim, Y. Qi, S.J. Harris, Sci. Rep. 2, 1 (2012)Google Scholar
  180. 180.
    N. Sharma, V.K. Peterson, M.M. Elcombe, M. Avdeev, A.J. Studer, N. Blagojevic, R. Yusoff, N. Kamarulzaman, J. Power Sources 195, 8258 (2010)Google Scholar
  181. 181.
    N. Sharma, V.K. Peterson, J. Power Sources 244, 695 (2013)Google Scholar
  182. 182.
    A. Senyshyn, M.J. Muhlbauer, K. Nikolowski, T. Pirling, H. Ehrenberg, J. Power Sources 203, 126 (2012)Google Scholar
  183. 183.
    L. Cai, K. An, Z. Feng, C. Liang, S.J. Harris, J. Power Sources 236, 163 (2013)Google Scholar
  184. 184.
    N. Sharma, V.K. Peterson, Electrochim. Acta 101, 79 (2013)Google Scholar
  185. 185.
    C.-W. Hu, N. Sharma, C.-Y. Chiang, H.-C. Su, V.K. Peterson, H.-W. Hsieh, Y.-F. Lin, W.-C. Chou, B.-Y. Shew, C.-H. Lee, J. Power Sources 244, 158 (2013)Google Scholar
  186. 186.
    M.A. Rodriguez, D. Ingersoll, S.C. Vogel, D.J. Williams, Electrochem. Solid-State Lett. 7, A8 (2004)Google Scholar
  187. 187.
    M.A. Rodriguez, M.H. Van Benthem, D. Ingersoll, S.C. Vogel, H.M. Reiche, Powder Diffr. 25, 143 (2010)Google Scholar
  188. 188.
    N. Sharma, X. Guo, G. Du, Z. Guo, J. Wang, Z. Wang, V.K. Peterson, J. Am. Chem. Soc. 134, 7867 (2012)Google Scholar
  189. 189.
    N. Sharma, D. Yu, Y. Zhu, Y. Wu, V.K. Peterson, Chem. Mater. 25, 754 (2013)Google Scholar
  190. 190.
    O. Bergstom, A.M. Andersson, K. Edstrom, T. Gustafsson, J. Appl. Cryst. 31, 823 (1998)Google Scholar
  191. 191.
    H. Berg, H. Rundlov, J.O. Thomas, Solid State Ionics 144, 65 (2001)Google Scholar
  192. 192.
    G. Du, N. Sharma, J.A. Kimpton, D. Jia, V.K. Peterson, Z. Guo, Adv. Funct. Mater. 21, 3990 (2011)Google Scholar
  193. 193.
    N. Sharma, M.V. Reddy, G. Du, S. Adams, B.V.R. Chowdari, Z. Guo, V.K. Peterson, J. Phys. Chem. C 115, 21473 (2011)Google Scholar
  194. 194.
    M. Roberts, J.J. Biendicho, S. Hull, P. Beran, T. Gustafsson, G. Svensson, K. Edstrom, J. Power Sources 226, 249 (2013)Google Scholar
  195. 195.
    F. Rosciano, M. Holzapfel, W. Scheifele, P. Novak, J. Appl. Cryst. 41, 690 (2008)Google Scholar
  196. 196.
    J.-F. Colin, V. Godbole, P. Novák, Electrochem. Commun. 12, 804 (2010)Google Scholar
  197. 197.
    V.A. Godbole, M. Hess, C. Villevieille, H. Kaiser, J.F. Colin, P. Novak, RSC Adv. 3, 757 (2013)Google Scholar
  198. 198.
    H. Liu, C.R. Fell, K. An, L. Cai, Y.S. Meng, J. Power Sources 240, 772 (2013)Google Scholar
  199. 199.
    W.K. Pang, N. Sharma, V.K. Peterson, J.-J. Shiu, S.H. Wu, J. Power Sources 246, 464 (2014)Google Scholar
  200. 200.
    P. Kolarova, J. Vacik, J. Spirkova-Hradilova, J. Cervena, Nucl. Instrum. Methods Phys. Res. Section B-Beam Interact. Mater. Atoms 141, 498 (1998)Google Scholar
  201. 201.
    L.H.M. Krings, Y. Tamminga, J. van Berkum, F. Labohm, A. van Veen, W.M. Arnoldbik, J. Vac. Sci. Technol. Vac. Surfaces Films 17, 198 (1999)Google Scholar
  202. 202.
    G.P. Lamaze, H.H. Chen-Mayer, D.A. Becker, F. Vereda, R.B. Goldner, T. Haas, P. Zerigian, J. Power Sources 119, 680 (2003)Google Scholar
  203. 203.
    S.M. Whitney, S.R.F. Biegalski, G. Downing, J. Radioanal. Nucl. Chem. 282, 173 (2009)Google Scholar
  204. 204.
    S. Whitney, S.R. Biegalski, Y.H. Huang, J.B. Goodenough, J. Electrochem. Soc. 156, A886 (2009)Google Scholar
  205. 205.
    S.C. Nagpure, R.G. Downing, B. Bhushan, S.S. Babu, L. Cao, Electrochim. Acta 56, 4735 (2011)Google Scholar
  206. 206.
    J.F.M. Oudenhoven, F. Labohm, M. Mulder, R.A.H. Niessen, F.M. Mulder, P.H.L. Notten, Adv. Mater. 23, 4103 (2012)Google Scholar
  207. 207.
    N. Kardjilov, I. Manke, A. Hilger, M. Strobl, J. Banhart, Mater. Today 14, 248 (2011)Google Scholar
  208. 208.
    A. Same, V. Battaglia, H.-Y. Tang, J.W. Park, J. Appl. Electrochem. 42, 1 (2012)Google Scholar
  209. 209.
    M. Lanz, E. Lehmann, R. Imhof, I. Exnar, P. Novak, J. Power Sources 101, 177 (2001)Google Scholar
  210. 210.
    J.P. Owejana, J.J. Gagliardo, S.J. Harris, H. Wang, D.S. Hussey, D.L. Jacobson, Electrochim. Acta 66, 94 (2012)Google Scholar
  211. 211.
    J.B. Siegel, X. Lin, A.G. Stefanopoulou, D.S. Hussey, D.L. Jacobson, D. Gorsich, J. Electrochem. Soc. 159, A523 (2011)Google Scholar
  212. 212.
    I. Manke, J. Banhart, A. Haibel, A. Rack, S. Zabler, N. Kardjilov, A. Hilger, A. Melzer, H. Riesemeier, Appl. Phys. Lett. 90, 214102 (2007)Google Scholar
  213. 213.
    G.V. Riley, D.S. Hussey, D.L. Jacobson, ECS Trans. 25, 75 (2010)Google Scholar
  214. 214.
    J. Nanda, H. Bilheux, S. Voisin, G.M. Veith, R. Archibald, L. Walker, A. Allu, N.J. Dudney, S. Pannala, J. Phys. Chem. C 116, 8401 (2012)Google Scholar
  215. 215.
    M. Hofmann, R. Gilles, Y. Gao, J.T. Rijssenbeek, M.J. Muhlbauer, J. Electrochem. Soc. 159, A1827 (2012)Google Scholar
  216. 216.
    M. Kamata, T. Esaka, S. Fujine, K. Yoneda, K. Kanda, J. Power Sources 68, 459 (1997)Google Scholar
  217. 217.
    N. Kardjilov, A. Hilger, I. Manke, M. Strobl, W. Treimera, J. Banhart, Nucl. Instr. Meth. Phys. Res. A 542, 16 (2005)Google Scholar
  218. 218.
    L.G. Butler, B. Schillinger, K. Ham, T.A. Dobbins, P. Liu, J.J. Vajo, Nucl. Instr. Meth. Phys. Res. A 651, 320 (2011)Google Scholar
  219. 219.
    D. Goers, M. Holzapfel, W. Scheifele, E. Lehmann, P. Vontobel, P. Novak, J. Power Sources 130, 221 (2004)Google Scholar
  220. 220.
    M. Wagemaker, R. van de Krol, A.A. van Well, Phys. B. 336, 124 (2003)Google Scholar
  221. 221.
    J.F.M. Oudenhoven, F. Labohm, M. Mulder, R.A.H. Niessen, F.M. Mulder, P.H.L. Notten, Adv. Mater. 23, 4103 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of ChemistryThe University of New South WalesSydneyAustralia
  2. 2.Faculty of Applied Sciences, Radiation, Science and Technology DepartmentDelft University of TechnologyDelftThe Netherlands

Personalised recommendations