Skip to main content

Problems and Simulations

  • Chapter
  • First Online:
Multiscale Modeling of Pedestrian Dynamics

Part of the book series: MS&A ((MS&A,volume 12))

  • 1471 Accesses

Abstract

In this chapter we give an informal introduction to the multiscale model and present some case studies of interest for applications, along with related numerical simulations. Results presented here are somehow complementary to those usually presented by physicists, engineers, and computer scientists. Indeed, we aim at showing how mathematical modeling can help in developing truthful pedestrian models, and at giving a sample of phenomena which can be simulated without the introduction of artificial or ad hoc effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A.: Dynamics of Crowd-Minds. Patterns of Irrationality in Emotions, Beliefs and Actions. World Scientific Series on Nonlinear Science, vol. 54. World Scientific, Hackensack (2005)

    Google Scholar 

  2. Ailisto, H.J., Lindholm, M., Mantyjarvi, J., Vildjiounaite, E., Makela, S.M.: Identifying people from gait pattern with accelerometers. In: Proceedings of the SPIE 5779, Biometric Technology for Human Identification II, Orlando, vol. 7, pp. 7–14 (2005)

    Google Scholar 

  3. Al-nasur, S., Kachroo, P.: A microscopic-to-macroscopic crowd dynamic model. In: Proceedings of the IEEE ITSC 2006, Toronto, pp. 606–611 (2006)

    Google Scholar 

  4. Amadori, D., Di Francesco, M.: The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions. Acta Math. Sci. 32B(1), 259–280 (2012)

    Google Scholar 

  5. Ambrosio, L., Gangbo, W.: Hamiltonian ODEs in the Wasserstein space of probability measures. Commun. Pure Appl. Math. 61(1), 18–53 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008)

    Google Scholar 

  7. Aminian, K., Rezakhanlou, K., De Andres, E., Fritsch, C., Leyvraz, P.F., Robert, P.: Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Med. Biol. Eng. Comput. 37(6), 686–691 (1999)

    Google Scholar 

  8. Antonini, G., Bierlaire, M., Weber, M.: Discrete choice models of pedestrian walking behavior. Transp. Res. B 40, 667–687 (2006)

    Google Scholar 

  9. Arechavaleta, G., Laumond, J.P., Hicheur, H., Berthoz, A.: An optimality principle governing human walking. IEEE Trans. Robot. 24(1), 5–14 (2008)

    Google Scholar 

  10. Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow? SIAM J. Appl. Math. 60, 916–938 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. U.S.A. 105(4), 1232–1237 (2008)

    Google Scholar 

  12. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim. Behav. 76, 201–215 (2008)

    Google Scholar 

  13. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston/Basel/Berlin (1997)

    MATH  Google Scholar 

  14. Bellomo, N., Bellouquid, A.: On the modeling of crowd dynamics: looking at the beautiful shapes of swarms. Netw. Heterog. Media 6(3), 383–399 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Bellomo, N., Dogbé, C.: On the modelling crowd dynamics from scaling to hyperbolic macroscopic models. Math. Models Methods Appl. Sci. 18, 1317–1345 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Bellomo, N., Dogbé, C.: On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53, 409–463 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Bellomo, N., Piccoli, B., Tosin, A.: Modeling crowd dynamics from a complex system viewpoint. Math. Models Methods Appl. Sci. 22, 1230004/1–29 (2012)

    MathSciNet  Google Scholar 

  18. Bellomo, N., Soler, J.: On the mathematical theory of the dynamics of swarms viewed as complex systems. Math. Models Methods Appl. Sci. 22(suppl. 1), 1140006/1–29 (2012)

    Google Scholar 

  19. Blue, V.J., Adler, J.L.: Emergent fundamental pedestrian flows from cellular automata microsimulation. Transp. Res. Rec. 1644, 29–36 (1998)

    Google Scholar 

  20. Blue, V.J., Adler, J.L.: Cellular automata microsimulation of bidirectional pedestrian flows. Transp. Res. Rec. 1678, 135–141 (1999)

    Google Scholar 

  21. Blue, V.J., Adler, J.L.: Modeling four-directional pedestrian flows. Transp. Res. Rec. 1710, 20–27 (2000)

    Google Scholar 

  22. Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258–168 (1969)

    MathSciNet  Google Scholar 

  23. Braess, D., Nagurney, A., Wakolbinger, T.: On a paradox of traffic planning. Transp. Sci. 39(4), 446–450 (2005)

    Google Scholar 

  24. Bresch, D., Choquet, C., Chupin, L., Colin, T., Gisclon, M.: Roughness-induced effect at main order on the Reynolds approximation. Multiscale Model. Simul. 8(3), 997–1017 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. AIMS on Applied Mathematics, vol. 2. American Institute of Mathematical Sciences, Springfield (2007)

    Google Scholar 

  26. Bruno, L., Corbetta, A., Tosin, A.: From individual behaviors to an evaluation of the collective evolution of crowds along footbridges arXiv:1212.3711

    Google Scholar 

  27. Bruno, L., Tosin, A., Tricerri, P., Venuti, F.: Non-local first-order modelling of crowd dynamics: a multidimensional framework with applications. Appl. Math. Model. 35, 426–445 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Burger, M., Di Francesco, M., Markowich, P.A., Wolfram, M.T.: Mean field games with nonlinear mobilities in pedestrian dynamics. arXiv:1304.5201

    Google Scholar 

  29. Burger, M., Markowich, P.A., Pietschmann, J.F.: Continuous limit of a crowd motion and herding model: analysis and numerical simulations. Kinet. Relat. Models 4, 1025–1047 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507–525 (2001)

    MATH  Google Scholar 

  31. Canuto, C., Fagnani, F., Tilli, P.: A Eulerian approach to the analysis of rendez-vous algorithms. In: Proceedings of the 17th IFAC World Congress (IFAC’08), Seoul, pp. 9039–9044. The International Federation of Automatic Control, IFAC World Congress, Seoul (2008)

    Google Scholar 

  32. Canuto, C., Fagnani, F., Tilli, P.: An Eulerian approach to the analysis of Krause’s consensus models. SIAM J. Control Optim. 50(1), 243–265 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Carrillo, J.A., Fornasier, M., Toscani, G., Vecil, F.: Particle, kinetic, and hydrodynamic models of swarming. In: Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, pp. 297–336. Birkhäuser, Boston (2010)

    Google Scholar 

  34. Cepolina, E., Tyler, N.: Understanding capacity drop for designing pedestrian environments. In: The 6th International Conference on Walking in the 21st Century, Zurich (2005)

    Google Scholar 

  35. Chitour, Y., Jean, F., Mason, P.: Optimal control models of goal-oriented human locomotion. SIAM J. Control Optim. 50(1), 147–170 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Chraibi, M., Kemloh, U., Schadschneider, A., Seyfried, A.: Force-based models of pedestrian dynamics. Netw. Heterog. Media 6, 425–442 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82, 046111/1–9 (2010)

    Google Scholar 

  38. Colombo, R.M., Garavello, M., Lecureux-Mercier, M.: A class of nonlocal models of pedestrian traffic. Math. Models Methods Appl. Sci. 22, 1150023/1–34 (2012)

    MathSciNet  Google Scholar 

  39. Colombo, R.M., Herty, M., Mercier, M.: Control of the continuity equation with a non local flow. ESAIM Control Optim. Calc. Var. 17, 353–379 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Colombo, R.M., Piccoli, B.: Special issue on “crowd dynamics: results and perspectives”. Netw. Heterog. Media 6(3), i–iii (2011)

    Google Scholar 

  41. Colombo, R.M., Rosini, M.D.: Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28, 1553–1567 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Colombo, R.M., Rosini, M.D.: Existence of nonclassical solutions in a pedestrian flow model. Nonlinear Anal. Real World Appl. 10, 2716–2728 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Coscia, V., Canavesio, C.: First-order macroscopic modelling of human crowd dynamics. Math. Models Methods Appl. Sci. 18, 1217–1247 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Cristiani, E. Coupling Brownian motion and heat equation: Toward a new description of multi-nature phenomena. arXiv:1406.1814

    Google Scholar 

  45. Cristiani, E., Engquist, B.: Hamilton-Jacobi equations. In: Engquist, B., Chan, T., Cook, W.J., Hairer, E., Hastad, J., Iserles, A., Langtangen, H.P., Le Bris, C., Lions, P.L., Lubich, C., Majda, A.J., McLaughlin, J., Nieminen, R.M., Oden, J., Souganidis, P., Tveito, A. (eds.) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  46. Cristiani, E., Frasca, P., Piccoli, B.: Effects of anisotropic interactions on the structure of animal groups. J. Math. Biol. 62, 569–588 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Cristiani, E., Piccoli, B., Tosin, A.: Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In: Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, pp. 337–364. Birkhäuser, Boston (2010)

    Google Scholar 

  48. Cristiani, E., Piccoli, B., Tosin, A.: Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9, 155–182 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Cristiani, E., Piccoli, B., Tosin, A.: How can macroscopic models reveal self-organization in traffic flow? In: 51st IEEE Conference on Decision and Control, Maui, 10–13 Dec 2012

    Google Scholar 

  50. Cristiani, E., Priuli, F.S., Tosin, A.: Modeling rationality to control self-organization of crowds: an environmental approach. arXiv:1406.7246

    Google Scholar 

  51. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)

    MathSciNet  Google Scholar 

  52. Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math. 2(1), 197–227 (2007)

    MathSciNet  MATH  Google Scholar 

  53. Daamen, W., Hoogendoorn, S.P.: Experimental research of pedestrian walking behavior. Transp. Res. Rec. 1828, 20–30 (2003)

    Google Scholar 

  54. Dabbs, J.M., Jr., Stokes, N.A., III: Beauty is power: the use of space on the sidewalk. Sociometry 38(4), 551–557 (1975)

    Google Scholar 

  55. Daganzo, C.F.: Requiem for second-order fluid approximations of traffic flow. Transp. Res. B 29, 277–286 (1995)

    Google Scholar 

  56. Dalton, R.C.: The secret is to follow your nose: route path selection and angularity. Environ. Behav. 35(1), 107–131 (2003)

    Google Scholar 

  57. De Angelis, E.: Nonlinear hydrodynamic models of traffic flow modelling and mathematical problems. Math. Comput. Model. 29, 83–95 (1999)

    MATH  Google Scholar 

  58. Degond, P., Dimarco, G., Mieussens, L.: A multiscale kinetic-fluid solver with dynamic localization of kinetic effects. J. Comput. Phys. 229(13), 4907–4933 (2010)

    MathSciNet  MATH  Google Scholar 

  59. Degond, P., Liu, J.G., Mieussens, L.: Macroscopic fluid model with localized kinetic upscaling effects. Multiscale Model. Simul. 5(3), 940–979 (2006)

    MathSciNet  MATH  Google Scholar 

  60. Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18(suppl.), 1193–1215 (2008)

    Google Scholar 

  61. Di Francesco, M., Fagioli, S.: Measure solutions for non-local interaction PDEs with two species. Nonlinearity 26(10), 2777–2808 (2103)

    Google Scholar 

  62. Di Francesco, M., Markowich, P.A., Pietschmann, J.F., Wolfram, M.T.: On the Hughes’ model for pedestrian flow: the one-dimensional case. J. Differ. Equ. 250, 1334–1362 (2011)

    MATH  Google Scholar 

  63. Dogbé, C.: On the numerical solutions of second order macroscopic models of pedestrian flows. Comput. Math. Appl. 56, 1884–1898 (2008)

    MathSciNet  MATH  Google Scholar 

  64. Dogbé, C.: Modeling crowd dynamics by the mean-field limit approach. Math. Comput. Model. 52, 1506–1520 (2010)

    MATH  Google Scholar 

  65. Dogbé, C.: On the modelling of crowd dynamics by generalized kinetic models. J. Math. Anal. Appl. 387(2), 512–532 (2012)

    MathSciNet  MATH  Google Scholar 

  66. Donev, A., Bell, J.B., Garcia, A.L., Alder, B.J.: A hybrid particle-continuum method for hydrodynamics of complex fluids. Multiscale Model. Simul. 8(3), 871–911 (2010)

    MathSciNet  MATH  Google Scholar 

  67. Duives, D.C., Daamen, W., Hoogendoorn, S.P.: State-of-the-art crowd motion simulation models. Transp. Res. C 37, 193–209 (2013)

    Google Scholar 

  68. El-Khatib, N., Goatin, P., Rosini, M.D.: On entropy weak solutions of Hughes’ model for pedestrian motion. Z. Angew. Math. Phys. 64, 223–251 (2013)

    MathSciNet  MATH  Google Scholar 

  69. Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. SIAM, Philadelphia (2014)

    Google Scholar 

  70. Fermo, L., Tosin, A. A fully-discrete-state kinetic theory approach to traffic flow on road networks. arXiv:1406.4257

    Google Scholar 

  71. Fermo, L., Tosin, A.: A fully-discrete-state kinetic theory approach to modeling vehicular traffic. SIAM J. Appl. Math. 73(4), 1533–1556 (2013)

    MathSciNet  MATH  Google Scholar 

  72. Fruin, J.J.: Designing for pedestrians: a level-of-service concept. Highw. Res. Rec. 355, 1–15 (1971)

    Google Scholar 

  73. Goatin, P., Mimault, M.: The wave-front tracking algorithm for Hughes’ model of pedestrian motion. SIAM J. Sci. Comput. 35(3), B606–B622 (2013)

    MathSciNet  MATH  Google Scholar 

  74. Goffman, E.: Relations in Public: Microstudies of the Public Order. Basic Books, New York (1971)

    Google Scholar 

  75. Golledge, R.G.: Human wayfinding and cognitive maps. In: Golledge, R.G. (ed.) Wayfinding Behavior, chap. 1, pp. 5–45. The Johns Hopkins University Press, Baltimore (1999)

    Google Scholar 

  76. Golson, H.L., Dabbs, J.M.: Line-following tendencies among pedestrians: a sex difference. Pers. Soc. Psychol. B 1(1), 16–18 (1974)

    Google Scholar 

  77. Guéant, O., Lasry, J.M., Lions, P.L.: Mean field games and applications. In: Carmona, R.A., Cinlar, E., Ekeland, I., Jouini, E., Scheinkman, J.A., Touzi, N. (eds.) Paris-Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Mathematics, pp. 205–266. Springer, Heidelberg/Dordrecht/London/New York (2011)

    Google Scholar 

  78. Ha, S.Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1(3), 415–435 (2008)

    MathSciNet  MATH  Google Scholar 

  79. Hankin, B.D., Wright, R.A.: Passenger flow in subways. Oper. Res. Q. 9(2), 81–88 (1958)

    Google Scholar 

  80. Hartmann, D., von Sivers, I.: Structured first order conservation models for pedestrian dynamics. Netw. Heterog. Media 8(4), 985–1007 (2013)

    MathSciNet  MATH  Google Scholar 

  81. Helbing, D.: A mathematical model for the behavior of pedestrians. Behav. Sci. 36, 298–310 (1991)

    Google Scholar 

  82. Helbing, D.: A fluid-dynamic model for the movement of pedestrians. Complex Syst. 6, 391–415 (1992)

    MathSciNet  MATH  Google Scholar 

  83. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)

    Google Scholar 

  84. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transp. Sci. 39(1), 1–24 (2005)

    Google Scholar 

  85. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Google Scholar 

  86. Helbing, D., Johansson, A.: Quantitative agent-based modeling of human interactions in space and time. In: Proceedings of the Fourth Conference of the European Social Simulation Association, Toulouse, pp. 623–637 (2007)

    Google Scholar 

  87. Helbing, D., Johansson, A., Zein Al-Abideen, H.: Dynamics of crowd disasters: an empirical study. Phys. Rev. E 75, 046109/1–7 (2007)

    Google Scholar 

  88. Helbing, D., Molnàr, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Google Scholar 

  89. Helbing, D., Molnár, P., Farkas, I.J., Bolay, K.: Self-organizing pedestrian movement. Environ. Plann. B Plann. Des. 28(3), 361–383 (2001)

    Google Scholar 

  90. Helbing, D., Vicsek, T.: Optimal self-organization. New J. Phys. 1, 13.1–13.17 (1999)

    Google Scholar 

  91. Henderson, L.F.: On the fluid mechanics of human crowd motion. Transp. Res. 8, 509–515 (1974)

    Google Scholar 

  92. Herty, M., Moutari, S.: A macro-kinetic hybrid model for traffic flow on road networks. Comput. Methods Appl. Math. 9(3), 238–252 (2009)

    MathSciNet  MATH  Google Scholar 

  93. Ho, H.W., Wong, S.C.: Two-dimensional continuum modeling approach to transportation problems. J. Transp. Syst. Eng. Inf. Technol. 6, 53–72 (2006)

    Google Scholar 

  94. Hoogendoorn, S.P., Bovy, P.H.L.: Gas-kinetic modeling and simulation of pedestrian flows. Transp. Res. Rec. 1710, 28–36 (2000)

    Google Scholar 

  95. Hoogendoorn, S.P., Bovy, P.H.L.: Simulation of pedestrian flows by optimal control and differential games. Optim. Control Appl. Meth. 24, 153–172 (2003)

    MathSciNet  MATH  Google Scholar 

  96. Hoogendoorn, S.P., Bovy, P.H.L.: Dynamic user-optimal assignment in continuous time and space. Transp. Res. B 38, 571–592 (2004)

    Google Scholar 

  97. Hoogendoorn, S.P., Bovy, P.H.L.: Pedestrian route-choice and activity scheduling theory and models. Transp. Res. B 38, 169–190 (2004)

    Google Scholar 

  98. Hoogendoorn, S.P., Daamen, W.: Self-organization in pedestrian flow. In: Hoogendoorn, S.P., Luding, S., Bovy, P.H.L., Schreckenberg, M., Wolf, D.E. (eds.) Traffic and Granular Flow ’03, Springer, Berlin Heidelberg 373–382 (2005)

    Google Scholar 

  99. Hoogendoorn, S.P., Daamen, W., Bovy, P.H.L.: Extracting microscopic pedestrian characteristics from video data. In: Transportation Research Board Annual Meeting 2003, Washington, DC, pp. 1–15. National Academy Press, Washington, DC (2003)

    Google Scholar 

  100. Huang, L., Wong, S.C., Zhang, M., Shu, C.W., Lam, W.H.K.: Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transp. Res. B 43, 127–141 (2009)

    Google Scholar 

  101. Hughes, R.L.: The flow of large crowds of pedestrians. Math. Comput. Simul. 53, 367–370 (2000)

    Google Scholar 

  102. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. B 36, 507–535 (2002)

    Google Scholar 

  103. Ishikawa, T., Fujiwara, H., Imai, O., Okabe, A.: Wayfinding with a GPS-based mobile navigation system: a comparison with maps and direct experience. J. Environ. Psychol. 28(1), 74–82 (2008)

    Google Scholar 

  104. Ishikawa, T., Montello, D.R.: Spatial knowledge acquisition from direct experience in the environment: individual differences in the development of metric knowledge and the integration of separately learned places. Cogn. Psychol. 52(2), 93–129 (2006)

    Google Scholar 

  105. Jacod, J., Protter, P.: Probability Essentials. Universitext, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  106. Jiang, Y., Zhang, P., Wong, S.C., Liu, R.: A higher-order macroscopic model for pedestrian flows. Physica A 389, 4623–4635 (2010)

    Google Scholar 

  107. Kachroo, P., Al-nasur, S.J., Wadoo, S.A., Shende, A.: Pedestrian Dynamics. Feedback Control of Crowd Evacuation. Understanding Complex Systems. Springer, Berlin/Heidelberg (2008)

    MATH  Google Scholar 

  108. Kamareddine, A.M., Hughes, R.L.: Towards a mathematical model for stability in pedestrian flows. Netw. Heterog. Media 6(3), 465–483 (2011)

    MathSciNet  MATH  Google Scholar 

  109. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312, 260–276 (2002)

    MATH  Google Scholar 

  110. Klar, A., Wegener, R.: Traffic flow: models and numerics. In: Degond, P., Pareschi, L., Russo, G. (eds.) Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology, pp. 219–258. Birkhäuser, Boston (2004)

    Google Scholar 

  111. Koshak, N., Fouda, A.: Analyzing pedestrian movement in Mataf using GPS and GIS to support space redesign. In: The 9th International Conference on Design and Decision Support Systems (DDSS) in Architecture and Urban Planning, The Netherlands (2008)

    Google Scholar 

  112. Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models. Phys. Rev. E 87, 063305/1–13 (2013)

    Google Scholar 

  113. Kraft, T.: An efficient method for coupling microscopic and macroscopic calculations in solidification modelling. Model. Simul. Mater. Sci. Eng. 5(5), 473–480 (1997)

    Google Scholar 

  114. Lachapelle, A.: Quelques problèmes de transport et de contrôle en économie: aspects théoriques et numériques. Ph.D. thesis, Université Paris-Dauphine, France (2010)

    Google Scholar 

  115. Lachapelle, A., Wolfram, M.T.: On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp. Res. B 45, 1572–1589 (2011)

    Google Scholar 

  116. Levine, M.: You-are-here maps: psychological considerations. Environ. Behav. 14(2), 221–237 (1982)

    Google Scholar 

  117. Levine, M., Marchon, I., Hanley, G.: The placement and misplacement of you-are-here maps. Environ. Behav. 16(2), 139–157 (1984)

    Google Scholar 

  118. Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A 229, 317–345 (1955)

    MathSciNet  MATH  Google Scholar 

  119. Lloyd, R., Heivly, C.: Systematic distortions in urban cognitive maps. Ann. Assoc. Am. Geogr. 77(2), 191–207 (1987)

    Google Scholar 

  120. Maury, B., Roudneff-Chupin, A., Santabrogio, F.: A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. 20, 1787–1821 (2010)

    MathSciNet  MATH  Google Scholar 

  121. Maury, B., Roudneff-Chupin, A., Santabrogio, F., Venel, J.: Handling congestion in crowd motion modeling. Netw. Heterog. Media 6, 485–519 (2011)

    MathSciNet  MATH  Google Scholar 

  122. Maury, B., Venel, J.: Un modèle de mouvements de foule. ESAIM Proc. 18, 143–152 (2007)

    MathSciNet  MATH  Google Scholar 

  123. Maury, B., Venel, J.: A mathematical framework for a crowd motion model. C. R. Acad. Sci. Paris Ser. I 346, 1245–1250 (2008)

    MathSciNet  MATH  Google Scholar 

  124. Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47, 353–389 (2003)

    MathSciNet  MATH  Google Scholar 

  125. Montello, D.: The perception and cognition of environmental distance: direct sources of information. In: Spatial Information Theory: A Theoretical Basis for GIS, Laurel Highlands. Lecture Notes in Computer Science, vol. 1329, pp. 297–311. Springer, Berlin/Heidelberg (1997)

    Google Scholar 

  126. Moussaïd, M., Guillot, E.G., Moreau, M., Fehrenbach, J., Chabiron, O., Lemercier, S., Pettré, J., Appert-Rolland, C., Degond, P., Theraulaz, G.: Traffic instabilities in self-organized pedestrian crowds. PLoS Comput. Biol. 8(3), e1002442/1–10 (2012)

    Google Scholar 

  127. Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. U.S.A. 108(17), 6884–6888 (2011)

    Google Scholar 

  128. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. Plos One 5(4), e10047/1–7 (2010)

    Google Scholar 

  129. Navin, F.P., Wheeler, R.J.: Pedestrian flow characteristics. Traffic Eng. 19(7), 30–33 (1969)

    Google Scholar 

  130. Okazaki, S.: A study of pedestrian movement in architectural space, Part 1: pedestrian movement by the application of magnetic model. Trans. A.I.J. 283, 111–119 (1979)

    Google Scholar 

  131. Okazaki, S.: A study of pedestrian movement in architectural space, Part 2: concentrated pedestrian movement. Trans. A.I.J. 284, 101–110 (1979)

    Google Scholar 

  132. Okazaki, S.: A study of pedestrian movement in architectural space, Part 3: along the shortest path, taking fire, congestion and unrecognized space into account. Trans. A.I.J. 285, 137–147 (1979)

    Google Scholar 

  133. Okazaki, S., Matsushita, S.: A study of pedestrian movement in architectural space, Part 5: a proubing walk and a guide walk by a guideboard. Trans. A.I.J. 302, 87–93 (1981)

    Google Scholar 

  134. Okazaki, S., Yamamoto, C.: A study of pedestrian movement in architectural space, Part 4: pedestrian movement represented in perspective. Trans. A.I.J. 299, 105–113 (1981)

    Google Scholar 

  135. O’Neill, E., Kostakos, V., Kindberg, T., Schiek, A., Penn, A., Fraser, D., Jones, T.: Instrumenting the city: developing methods for observing and understanding the digital cityscape. In: Dourish, P., Friday, A. (eds.) UbiComp 2006: Ubiquitous Computing. Lecture Notes in Computer Science, vol. 4206, pp. 315–332. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  136. Ozbay, K., Yang, H., Bartin, B.: Calibration of an infrared-based automatic counting system for pedestrian traffic flow data collection. In: Transportation Research Board 89th Annual Meeting, Washington, DC (2010)

    Google Scholar 

  137. Papadimitriou, E., Yannis, G., Golias, J.: A critical assessment of pedestrian behaviour models. Transp. Res. F 12(3), 242–255 (2009)

    Google Scholar 

  138. Payne, H.J.: Models of freeway traffic and control. Math. Models Publ. Syst. Simul. Counc. Proc. 28, 51–61 (1971)

    Google Scholar 

  139. Pelechano, N., Allbeck, J.M., Badler, N.I.: Virtual Crowds: Methods, Simulation, and Control. Synthesis Lectures on Computer Graphics and Animation. Morgan & Claypool, San Rafael (2008)

    Google Scholar 

  140. Piccoli, B., Rossi, F.: On properties of the generalized Wasserstein distance arXiv:1304.7014

    Google Scholar 

  141. Piccoli, B., Rossi, F.: Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes. Acta Appl. Math. 124(1), 73–105 (2013)

    MathSciNet  MATH  Google Scholar 

  142. Piccoli, B., Rossi, F.: Generalized Wasserstein distance and its application to transport equations with source. Arch. Ration. Mech. Anal. 211(1), 335–358 (2014)

    MathSciNet  MATH  Google Scholar 

  143. Piccoli, B., Sussmann, H.J.: Regular synthesis and sufficiency conditions for optimality. SIAM J. Control Optim. 39(2), 359–410 (2000)

    MathSciNet  MATH  Google Scholar 

  144. Piccoli, B., Tosin, A.: Pedestrian flows in bounded domains with obstacles. Contin. Mech. Thermodyn. 21, 85–107 (2009)

    MathSciNet  MATH  Google Scholar 

  145. Piccoli, B., Tosin, A.: Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal. 199, 707–738 (2011)

    MathSciNet  MATH  Google Scholar 

  146. Plamondon, R., Guerfali, W.: The 2∕3 power law: when and why? Acta Psychol. 100(1), 85–96 (1998)

    Google Scholar 

  147. Prigogine, I.: A Boltzmann-like approach to the statistical theory of traffic flow. In: Theory of Traffic Flow, Warren, pp. 158–164. Elsevier, Amsterdam (1961)

    Google Scholar 

  148. Prigogine, I., Herman, R.: Kinetic Theory of Vehicular Traffic. American Elsevier, New York (1971)

    MATH  Google Scholar 

  149. Quarteroni, A., Veneziani, A.: Analysis of a geometrical multiscale model based on the coupling of ODE and PDE for blood flow simulations. Multiscale Model. Simul. 1(2), 173–195 (2003)

    MathSciNet  MATH  Google Scholar 

  150. Rachev, S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester/New York (1991)

    MATH  Google Scholar 

  151. Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

    MathSciNet  Google Scholar 

  152. Roggen, D., Wirz, M., Tröster, G., Helbing, D.: Recognition of crowd behavior from mobile sensors with pattern analysis and graph clustering methods. Netw. Heterog. Media 6(3), 521–544 (2011)

    MathSciNet  Google Scholar 

  153. Rosini, M.D.: Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications. Understanding Complex Systems. Springer, Switzerland (2013)

    Google Scholar 

  154. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  155. Schaal, S., Sternad, D.: Origins and violations of the 2∕3 power law in rhythmic three-dimensional arm movements. Exp. Brain Res. 136(1), 60–72 (2001)

    Google Scholar 

  156. Schadschneider, A., Seyfried, A.: Empirical results for pedestrian dynamics and their implications for modeling. Netw. Heterog. Media 6, 545–560 (2011)

    MathSciNet  MATH  Google Scholar 

  157. Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transp. Sci. 43(3), 395–406 (2009)

    Google Scholar 

  158. Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. J. Stat. Mech. Theory Exp. 2005(10), P10002 (2005)

    Google Scholar 

  159. Thalmann, D.: Crowd Simulation. Wiley Online Library (2007)

    Google Scholar 

  160. Tosin, A., Frasca, P.: Existence and approximation of probability measure solutions to models of collective behaviors. Netw. Heterog. Media 6, 561–596 (2011)

    MathSciNet  MATH  Google Scholar 

  161. Twarogowska, M., Goatin, P., Duvigneau, R.: Macroscopic modeling and simulations of room evacuation. Appl. Math. Model. (In press)

    Google Scholar 

  162. Venuti, F., Bruno, L.: Crowd-structure interaction in lively footbridges under synchronous lateral excitation: a literature review. Phys. Life Rev. 6, 176–206 (2009)

    Google Scholar 

  163. Vickers, D., Bovet, P., Lee, M.D., Hughes, P.: The perception of minimal structures: performance on open and closed versions of visually presented Euclidean travelling salesperson problems. Perception 32(7), 871–886 (2003)

    Google Scholar 

  164. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Google Scholar 

  165. Vieilledent, S., Kerlirzin, Y., Dalbera, S., Berthoz, A.: Relationship between velocity and curvature of a human locomotor trajectory. Neurosci. Lett. 305(1), 65–69 (2001)

    Google Scholar 

  166. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics Series, vol. 58. American Mathematical Society, Providence (2003)

    Google Scholar 

  167. Villani, C.: Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 338. Springer, Berlin/Heidelberg (2009)

    Google Scholar 

  168. Viviani, P., Flash, T.: Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J. Exp. Psychol. Hum. 21(1), 32–53 (1995)

    Google Scholar 

  169. Weimar, J.R.: Coupling microscopic and macroscopic cellular automata. Parallel Comput. 27(5), 601–611 (2001)

    MATH  Google Scholar 

  170. Whitham, G.B.: Linear and Nonlinear Waves. Pure and Applied Mathematics. Wiley, New York (1974)

    MATH  Google Scholar 

  171. Willis, A., Kukla, R., Kerridge, J., Hine, J.: Laying the foundations: the use of video footage to explore pedestrian dynamics in PEDFLOW. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 181–186. Springer, Berlin/Heidelberg (2002)

    Google Scholar 

  172. Wolff, M.: Notes on the behaviour of pedestrians. In: Birenbaum, A., Sagarin, E. (eds.) People in Places: The Sociology of the Familiar, pp. 35–48. Praeger, New York (1973)

    Google Scholar 

  173. Xia, Y., Wong, S.C., Shu, C.W.: Dynamic continuum pedestrian flow model with memory effect. Phys. Rev. E 79, 066113/1–8 (2009)

    Google Scholar 

  174. Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Phys. Rev. E 72, 026112/1–7 (2005)

    Google Scholar 

  175. Zhang, H.M.: A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. B 36, 275–290 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cristiani, E., Piccoli, B., Tosin, A. (2014). Problems and Simulations. In: Multiscale Modeling of Pedestrian Dynamics. MS&A, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-06620-2_2

Download citation

Publish with us

Policies and ethics