Skip to main content

Feedforward Control

  • Chapter
  • First Online:
  • 2247 Accesses

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Unlike feedback control, which reacts to the measured tracking error, feedforward control compensates or anticipates for poor performance. A feedforward controller does this by exploiting some information about the system, and thus a well-designed feedforward controller requires sufficient knowledge of the plant dynamics and nonlinearities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The work was not well known at the time because it was written in Japanese.

References

  • Arimoto S, Kawamura S, Miyazaki F (1984) Bettering operation of robots by learning. J Robot Syst 1(2):123–140

    Google Scholar 

  • Arimoto S, Kawamura S, Miyazaki F (1984) Bettering operation of dynamic systems by learning: a new control theory for servomechanism or mechatronics systems. In: Proceedings of American control conference, pp 1064–1069

    Google Scholar 

  • Atkeson CG, McIntyre J (1986) Robot trajectory learning through practice. In: IEEE Int Conf Robot Autom, pp 1737–1742

    Google Scholar 

  • Bayo E (1987) A finite-element approach to control the end-point motion of a single-link flexible robot. J Robot Syst 4:63–75

    Article  Google Scholar 

  • Binnig G (1992) Force microscopy. Ultramicroscopy 42–44:7–15

    Article  Google Scholar 

  • Bondi P, Casalino G, Gambardella L (1988) On the iterative learning control theory for robotic manipulators. IEEE J Robot Autom 4(1):14–22

    Article  Google Scholar 

  • Bristow DA, Dong J, Alleyne AG, Ferriera P, Salapaka S (2008) High bandwidth control of precision motion instrumentation. Rev Sci Instr 79:103704

    Article  Google Scholar 

  • Brokate M, Sprekels J (1996) Hysteresis and phase transitions. Springer, New York

    Book  MATH  Google Scholar 

  • Chen Y, Wen C (1999) Iterative learning control: convergence, robustness and applications. Springer, New York

    Book  MATH  Google Scholar 

  • Choi GS, Lim YA, Choi GH (2002) Tracking position control of piezoelectric actuators for periodic reference inputs. Mechatronics 12(5):669–684

    Article  MathSciNet  Google Scholar 

  • Craig JJ (1984) Adaptive control of manipulators through repeated trials. In: Proceedings of American control conference, pp 1566–1573

    Google Scholar 

  • Croft D, Shed G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. Trans ASME J Dyn Syst Meas Cont 123:35–43

    Article  Google Scholar 

  • Devasia S, Chen D, Paden B (1996) Nonlinear inversion-based output tracking. IEEE Trans Autom Cont 41(7):930–942

    Article  MATH  MathSciNet  Google Scholar 

  • Devasia S (1997) Output tracking with nonhyperbolic and near nonhyperbolic internal dynamics: helicopter hover control, AIAA. J Guidance Cont Dyn 20(3):573–580

    Article  MATH  Google Scholar 

  • Dewey JS, Leang KK, Devasia S (1998) Experimental and theoretical results in output-trajectory redesign for flexible structures. ASME J Dyn Syst Meas Cont 120(4):456–461

    Google Scholar 

  • Francis BA, Wonham WM (1976) The internal model principle of control theory. Automatica 12(5):457–465

    Article  MATH  MathSciNet  Google Scholar 

  • Ghosh J, Paden B (2001) Iteartive learning control for nonlinear nonminimum phase plants. ASME J Dyn Syst Meas Cont 123:21–30

    Article  Google Scholar 

  • Hara S, Yamamoto Y, Omata T, Nakano M (1988) Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans Autom Cont 33(7):659–668

    Article  MATH  MathSciNet  Google Scholar 

  • Hoffmann W, Peterson K, Stefanopoulou AG (2003) Iterative learning control for soft landing of electromechanical valve actuator in camless engines. IEEE Trans Cont Syst Tech 11(2):174–184

    Article  Google Scholar 

  • Hu M, Du H, Ling S-F, Zhou Z, Li Y (2004) Motion control of an electrostrictive actuator. Mechatronics 14(2):153–161

    Article  Google Scholar 

  • Inoue T, Nakano M, Iwai S (1981) High accuracy control of a proton synchrotron magnet power supply. In: Proceedings of 8th world congress IFAC, vol 20. pp 216–221

    Google Scholar 

  • Isidori A (1995) Nonlinear control systems, 3rd ed. Springer, New York

    Google Scholar 

  • Kawamura S, Miyazaki F, Arimoto S (1988) Realization of robot motion based on a learning method. IEEE Trans Syst Man Cybern 18(1):126–134

    Article  Google Scholar 

  • Kim K-S, Zou Q, Su C (2008) A new approach to scan-trajectory design and tracking: AFM force measurement example. ASME J Dyn Syst Meas Cont 130:051005-1–051005-10

    Google Scholar 

  • Kim K-S, Lin Z, Shrotriya P, Sundararajan S, Zou Q (2008) Iterative control approach to high-speed force-distance curve measurement using AFM: time dependent response of PDMS. Ultramicroscopy 108:911–920

    Article  Google Scholar 

  • Lam HY-F (1979) Analog and digital filters: design and realization. Prentice-Hall, New York

    Google Scholar 

  • Leang KK, Devasia S (2003) Iterative feedforward compensation of hysteresis in piezo positioners. In: IEEE 42nd conference on decision and controls, invited session on nanotechnology: control needs and related perspectives, pp 2626–2631

    Google Scholar 

  • Leang KK, Devasia S (2006) Design of hysteresis-compensating iterative learning control for piezo positioners: application to atomic force microscopes. Mechatronics 16(3–4):141–158

    Article  Google Scholar 

  • Leang KK, Devasia S (2007) Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in afm piezoactuators. IEEE Trans Cont Syst Technol 15(5):927–935

    Article  Google Scholar 

  • Lee TH, Tan KK, Lim SY, Dou HF (2000) Iterative learning control of permanent magnet linear motor with relay automatic tuning. Mechatronics 10:169–190

    Article  Google Scholar 

  • Li Y, Bechhoefer J (2008) Feedforward control of a piezoelectric flexure stage for AFM. In: American control conference. Seattle, pp 2703–2709

    Google Scholar 

  • Moore KL, Dahleh M, Bhattacharyya SP (1992) Iterative learning control: a survey and new results. J Robot Syst 9(5):563–594

    Article  MATH  Google Scholar 

  • Saab SS (1994) On the p-type learning control. IEEE Trans Autom Cont 39(11):2298–2302

    Article  MATH  MathSciNet  Google Scholar 

  • Sugie T, Ono T (1991) An iterative learning control law for dynamical systems. Automatica 27(4):729–732

    Article  MathSciNet  Google Scholar 

  • Tan KK, Lee TH, Zhou HX (2001) Micro-positioning of linear-piezoelectric motors based on a learning nonlinear PID controller. IEEE/ASME Trans Mechatron 6(4):428–436

    Article  Google Scholar 

  • Tan X, Baras JS (2005) Adaptive identification and control of hysteresis in smart materials. IEEE Trans Autom Cont 50(6):827–839

    Article  MathSciNet  Google Scholar 

  • Tien S, Zou Q, Devasia S (2005) Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation. IEEE Trans Cont Syst Tech 13(6):921–931

    Article  Google Scholar 

  • Uchiyama M (1978) Formation of high-speed motion pattern of a mechanical arm by trial. Trans Soc Instrum Cont Eng 14(6):706–712

    Google Scholar 

  • Venkataraman R, Krishnaprasad PS (2000) Approximate inversion of hysteresis: theory and numerical results. In: Proceedings of 39th IEEE conference on decision and control, pp 4448–4454

    Google Scholar 

  • Wu Y, Zou Q, Su C (2008) A current cycle feedback iterative learning control approach to AFM imaging. In: American control conference, pp 2040–2045

    Google Scholar 

  • Zou Q, Devasia S (1999) Preview-based stable-inversion for output tracking. ASME J Dyn Syst Meas Cont 121(4):625–630

    Article  Google Scholar 

  • Zou Q, Devasia S (2004) Preview-based optimal inversion for output tracking: application to scanning tunneling microscopy. IEEE Cont Syst Technol 12(3):375–386

    Article  Google Scholar 

  • Zou Q, Devasia S (2007) Preview-based stable-inversion for output tracking of nonlinear nonminimum-phase systems: the vtol example. Automatica 41(1):117–127

    Article  MathSciNet  Google Scholar 

  • Zou Q (2009) Optimal preview-based stable-inversion for output tracking of nonminimum-phase linear systems. Automatica 45(1):230–237

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Fleming .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fleming, A.J., Leang, K.K. (2014). Feedforward Control. In: Design, Modeling and Control of Nanopositioning Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-06617-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06617-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06616-5

  • Online ISBN: 978-3-319-06617-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics