Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Due to their high stiffness, compact dimensions, and extremely high positioning resolution, piezoelectric actuators are used exclusively in the vast majority of nanopositioning systems. This chapter introduces piezoelectric actuators and describes their electromechanical properties, with a focus on those that are relevant in nanopositioning applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pierre Curie was born in 1859 and died of an accident with a horse carriage in 1906. Jacques was born in 1855 and lived till 1941. The discovery of the piezoelectric effect was made in Jacques’ laboratory (Mason 1981).

  2. 2.

    Ferroelectricity was discovered in the late 1940s (Berlincourt 1981; King et al. 1990).

  3. 3.

    http://www.morganelectroceramics.com/tutorials/piezoguide10.html

References

  • Adriaens HJMTA, de Koning WL, Banning R (2000) Modeling piezoelectric actuators. IEEE/ASME Trans Mechatron 5(4):331–341

    Google Scholar 

  • Ando T, Kodera N, Maruyama D, Takai E, Saito K, Toda A (2002) A high-speed atomic force microscope for studying biological macromolecules in action. Jpn J Appl Phys, Part 1 41(7B):4851–4856

    Google Scholar 

  • APC International Ltd. (2002) Piezoelectric ceramics: principles and applications. APC International Ltd, Mackeyville

    Google Scholar 

  • APC International Ltd. (2003) Piezo-mechanics: an introduction. Pleasant Gap, APC International Ltd., Pennsylvania

    Google Scholar 

  • Ballato A (1996) Piezoelectricity: history and new thrusts. In: IEEE ultrasonics symposium, pp 575–583

    Google Scholar 

  • Barrett RC, Quate CF (1991) Optical scan-correction system applied to atomic force microscopy. Rev Sci Instrum 62(6):1393–1399

    Article  Google Scholar 

  • Berlincourt D (1981) Piezoelectric ceramics: characteristics and applications. J Acoust Soc Am 70(6):1586–1595

    Article  Google Scholar 

  • Bronowicki AJ, Abhyankar NS, Griffin SF (1999) Active vibration control of large optical space structures. Smart Mater Struct 8(6):740–752

    Google Scholar 

  • Bryant RB, Mossi KM, Robbins JA, Bathel BF (2005) The correlation of electrical properties of prestressed unimorphs as a function of mechanical strain and displacement. Integr Ferroelectr 71:267–287

    Article  Google Scholar 

  • Cady WG (1946) Piezoelectricity. McGraw-Hill, New York

    Google Scholar 

  • Callister WD (1994) Materials science and engineering: an introduction. Wiley, New York

    Google Scholar 

  • Chen CJ (1992) Electromechanical deflections of piezoelectric tubes with quartered electrodes. Appl Phys Lett 60(1):132–134

    Google Scholar 

  • Croft D, Devasia S (1999) Vibration compensation for high speed scanning tunneling microscopy. Rev Sci Instrum 70(12):4600–4605

    Article  Google Scholar 

  • Croft D, Shed G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. Trans ASME J Dyn Syst Measure Control 123:35–43

    Google Scholar 

  • Damjanovic D, Newnham RE (1992) “Electrostrictive and piezoelectric materials for actuator applications. J Intell Mater Syst Struct 3(2):190–208

    Google Scholar 

  • Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823

    Google Scholar 

  • Etzold KF (2000) Ferroelectric and piezoelectric materials. CRC Press LLC, Boca Raton

    Google Scholar 

  • Fleming AJ (March 2008) Techniques and considerations for driving piezoelectric actuators at high-speed. In: Proceedings of SPIE smart materials and structures, San Diego, CA

    Google Scholar 

  • Fleming AJ, Moheimani SOR (2005) A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners. Rev Sci Instrum 76:073707

    Google Scholar 

  • Giurgiutiu V (2000) Review of smart-materials actuation solutions for aeroelastic and vibration control. J Intell Mater Syst Struct 11:525–544

    Google Scholar 

  • Holman AE, Scholte PMLO, Heerens WC, Tuinstra F (1995) Analysis of piezo actuators in translation construction. Rev Sci Instrum 66(5):3208–3215

    Article  Google Scholar 

  • Hues SM, Draper CF, Lee KP, Colton RJ (1994) Effect of PZT and PMN actuator hysteresis and creep on nanoindentation measurements using force microscopy. Rev Sci Instrum 65(5):1561–1565

    Article  Google Scholar 

  • Janocha H, Kuhnen K (2000) Real-time compensation of hysteresis and creep in piezoelectric actuators. Sens Actuators, A 79:83–89

    Article  Google Scholar 

  • Jiles DC, Atherton DL (1986) Theory of ferromagnetic hysteresis. J Magn Magn Mater 61:48–60

    Article  Google Scholar 

  • Jung H, Gweon D-G (2000) Creep characteristics of piezoelectric actuators. Rev Sci Instrum 71(4):1896–1900

    Article  Google Scholar 

  • Jung H, Shim JY, Gweon D (2000) New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep. Rev Sci Instrum 71(9):3436–3440

    Article  Google Scholar 

  • King TG, Preston ME, Murphy BJM, Cannell DS (1990) Piezoelectric ceramic actuators: a review of machinery applications. Precis Eng 12(3):131–136

    Article  Google Scholar 

  • Koops KR, Scholte PMLO, Koning WLd (1999) Observation of zero creep in piezoelectric actuators. Appl Phys A 68:691–697

    Google Scholar 

  • Krejci P, Kuhnen K (2001) Inverse control of systems with hysteresi and creep. IEE Proc Control Theory Appl 148(3):185–192

    Google Scholar 

  • Leang KK, Fleming AJ (2008) High-speed serial-kinematic AFM scanner: design and drive considerations. In American control conference, invited session on modeling and control of SPM, 2008, pp. 3188–3193

    Google Scholar 

  • Lee H-J, Saravanos DA (1998) The effect of temperature dependent material properties on the response of piezoelectric composite materials. J Intell Mater Syst Struct 9(7):503–508

    Google Scholar 

  • Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Mason WP (1946) Quartz crystal applications. D. Van Nostrand Co., Inc, New York, pp. 11–56

    Google Scholar 

  • Mason WP (1981) Piezoelectricity, its history and applications. J Acoust Soc Am 70(6):1561–1566

    Google Scholar 

  • Moheimani SOR, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping. Springer, Berlin

    Google Scholar 

  • Morgan Matroc Inc (1997) Guide to modern piezoelectric ceramics, review. Morgan Matroc Inc, Bedford, pp 7–91

    Google Scholar 

  • Physik Instrumente (2009) Piezo Nano Positioning: Inspirations 2009

    Google Scholar 

  • Ramsay JV, Mugridge EGV (1962) Barium titanate ceramics for fine-movement control. J Sci Instrum 39:636–637

    Article  Google Scholar 

  • Rifai OME, Youcef-Toumi K (2002) Creep in piezoelectric scanners of atomic force microscopes. In: Proceedings of American control conference, 2002, pp 3777–3782

    Google Scholar 

  • Rost MJ, Crama L, Schakel P, van Tol E, van Velzen-Williams GBEM, Overgauw CF, ter Horst H, Dekker H, Okhuijsen B, Seynen M, Vijftigschild A, Han P, Katan AJ, Schoots K, Schumm R, van Loo W, Oosterkamp TH, Frenken JWM (2005) Scanning probe microscopes go video rate and beyond. Rev Sci. Instrum 76(5):053710-1–053710-9

    Google Scholar 

  • Salapaka S, Sebastin A, Cleveland JP, Salapaka MV (2002) High bandwidth nano-positioner: a robust control approach. Rev Sci Instrum 73(9):3232–3241

    Article  Google Scholar 

  • Sawyer CB (1931) The use of Rochelle salt crystals for electrical reproducers and microphones. Proc Inst Radio Eng 19(11):2020–2029

    Google Scholar 

  • Schitter G, Menold P, Knapp HF, Allgöwer F, Stemmer A (2001) High performance feedback for fast scanning atomic force microscopes. Rev Sci Instrum 72(8):3320–3327

    Article  Google Scholar 

  • Schitter G, Stemmer A (2002) Fast closed loop control of piezoelectric transducers. J Vac Sci Technol B 20(1):350–352

    Article  Google Scholar 

  • Schitter G, Åström KJ, DeMartini BE, Thurner PJ, Turner KL, Hansma PK (2007) Design and modeling of a high-speed AFM-scanner. IEEE Trans Control Syst Technol 15(5):906–915

    Google Scholar 

  • Sulchek T, Hsieh R, Adams JD, Minne SC, Quate CF (2000) High-speed atomic force microscopy in liquid. Rev Sci Instrum 71(5):2097–2099

    Article  Google Scholar 

  • Tan X, Baras JS (2005) Adaptive identification and control of hysteresis in smart materials. IEEE Trans Autom Control 50(6):827–839

    Article  MathSciNet  Google Scholar 

  • Tseng AA, Notargiacomob A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol 23(3):877–894

    Article  Google Scholar 

  • Uchino K (1991) Engineering materials handbook: ceramics and glass, vol 4. ASM International, Ohio

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Fleming .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fleming, A.J., Leang, K.K. (2014). Piezoelectric Transducers. In: Design, Modeling and Control of Nanopositioning Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-06617-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06617-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06616-5

  • Online ISBN: 978-3-319-06617-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics