Skip to main content

Future Strain Properties of Multilayer Film Materials

  • Conference paper
  • First Online:
Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 156))

Abstract

This chapter is devoted to the strain properties of multilayer thin-film materials based on metals. Although this problem is the subject of study researchers, many questions remain poorly understood, which include the development of a theoretical model of the tensoresistive effect for multilayer films and a comparative analysis of its features in the range of elastic and plastic strain and temperature dependence of strain coefficient. This work also focuses on the question about increase of strain coefficient through the surface, grain boundary and interface scattering of electrons. The purpose of this work is analytical analysis of the known theoretical models of tensoresistive effect: linearized and three-dimensional Tellier–Tosser–Pichard models for one layer and semiphenomenological model for multilayer by authors of this work, which takes into account the dependence of the electron transport parameters (mean free path, specularity parameter and transmission coefficient at the boundary and interface). The purpose of this work was to compare the theoretical models and experimental results obtained in the field of elastic deformation and analysis of the temperature dependence of strain coefficient and the insufficiently explored question of magneto-deformation effect. The presented results allow us to more accurately describe the physical processes in the multilayer films under strain, especially to understand the processes in the elastic and plastic strain and the conclusion on the application of multilayer films as sensitive elements of sensors strain, magnetic field and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alalykin SS, Alalykin AS, Danilov AA, Krylov PN (2007) Tenzorezistivnye svoistva nanorazmernykh multisloinykh structure Cu/Fe. Bulletin University of Udmurtia 4:84–87

    Google Scholar 

  2. Anwarzai B, Ac V, Luby S, Majkova E, Sendera R (2010) Pseudo spin-valve on plastic substrate as sensing elements of mechanical strain. Vacuum 84:108–110

    Google Scholar 

  3. Buryk PI, Velykodnyi DV, Odnodvorets LV, Protsenko IYu, Tkach OP (2011) Tensoresistive effect in thin metal films in the range of elastic and plastic strain. Tech Phys 56(2):232–237

    Google Scholar 

  4. Cammarata RC, Schlesinger TE, Kim C, Qadri SB, Edelstein S (1990) Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films. Appl Phys Lett 59(9):1862–1864.

    ADS  Google Scholar 

  5. Cheshko IV, Protsenko IYu (2009) Formuvannya metastabil’nykh tverdykh rozchyniv u plivkovykh systemakh na osnove Co i Cu, Ag ta Au. Metallofiz Noveishie Technol 31(7):963–967

    Google Scholar 

  6. Cheshko IV, Makukha ZM, Odnodvorets LV, Shumakova MO, Velykodnyi DV, Protsenko IYu (2013) Strain effect on magneto-optical and magnetic properties of film system based on Fe and Pt. Univ J Mater Sci 1(2):13–17

    Google Scholar 

  7. Chornous AM, Opanasyuk NM, Pogrebnjak AD, Protsenko IYu (2000) Experimental test of a three-dimensional model for electrophysical properties of metal films. Jpn J Appl Phys 39(12B):L1320–L1323

    ADS  Google Scholar 

  8. Dekhtyaruk L, Pazukha I, Protsenko S, Cheshko I (2006) Conductivity of single-crystal and polycrystalline bilayer metal films under the conditions of interdiffusion. Phys Solid State 48(10):1831–1843

    ADS  Google Scholar 

  9. Dekhtyaruk LV, Protsenko IYu, Chornous AM (2007) Transportni rozmirni effecty u dvosharovykh polikrystakichnykh plivkakh. Usp Fiz Met 8(1):21–64

    Google Scholar 

  10. Emery RD, Povirk GL (2003) Tensile behavior of free-standing gold films. Part I. Coarse-graines films. Acta Mater 51:2067–2078

    Google Scholar 

  11. Espinosa HD, Prorok BC, Peng B (2004) Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J Mech Phys Solids 52:667–689

    ADS  Google Scholar 

  12. Fu B, Gao L (2006) Tantalum nitride/copper nanocomposite with zero temperature coefficient of resistance. Scripta Mater 55:521–524.

    Google Scholar 

  13. Ghodgaokard AM, Ramani K (1980) Computation of the strain coefficient of resistivity in thin metallic films. Phys Stat Sol A 60(1):С99–С109

    Google Scholar 

  14. Hrovat M, Belavic D, Samardzija Z, Holc J (2001) A characterization of thick film resistors for strain gauge applications. J Mater Sci 36:2679–2689

    ADS  Google Scholar 

  15. Ievlev VM, Belonogov EK, Maksimenko AA, Agapov BL, Shkatov VV (2006) Substructura i prochnost’ condensirovannykh plenok palladiya. Deformatsiya i razrushenie materialov. V.1. MGIU, Moskow, pp 468–471

    Google Scholar 

  16. Jen SU, Wu TC, Liu CH (2003) Piezoresistance characteristics of some magnetic and non-magnetic metal films. J Magn Magnet Mat 256:54–62

    ADS  Google Scholar 

  17. Khater F, El-Hiti M (1988a) Strain coefficients of electrical resistance of double-layer thin metallic films. Phys Stat Sol A 108(1):241–249

    ADS  Google Scholar 

  18. Khater F, El-Hiti M (1988b) Temperature coefficient of the strain coefficient of electrical resistivity of double-layer thin metallic films. Phys Stat Sol A 109(2):517–523

    ADS  Google Scholar 

  19. Koppert R, Goettel D, Freitag-Weber O, Shultes G (2009) Nickel containing diamond like carbon thin films. Solid State Sci 11:1797–1800

    ADS  Google Scholar 

  20. Kuczynski GC (1954) Effect of elastic strain on the electrical resistance of metals. Phys Rev 94(1):61–64

    ADS  Google Scholar 

  21. Lasyuchenko O, Odnodvorets L, Protsenko I (2000) Microscopic theory of tensosensibility of multilayer polycrystalline films. Cryst Res Technol 35(3):329–332

    Google Scholar 

  22. Lee H-J, Cornella G, Bravman JC (2000) Stress relaxation of free-standing aluminum beams for microelectromechanical systems applications. Appl Phys Lett 76(23):3415–3417

    ADS  Google Scholar 

  23. Lee HJ, Zhang P, Bravman JC (2003) Tensile failure by grain thinning in micromachined aluminum thin films. Appl Phys 93:1443–1451

    Google Scholar 

  24. Luby S, Anwarzai B, Aĉ V, Majkova E, Senderak R (2012) Pseudo spin-valve with different spacer thickness as sensing elements of mechanical strain. Vacuum 86:718–720

    Google Scholar 

  25. Makukha ZM, Protsenko SI, Odnodvorets LV, Protsenko IYu (2012) Magneto-strain effect in double-layer film systems. J Nano Electron Phys 4(2) Part II. doi:02043-1-02043-3

    Google Scholar 

  26. Mayadas AF, Shatzkes M (1970) Electrical resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys Rev B1(4):1382–1389

    ADS  Google Scholar 

  27. Meiksin ZH (1975) Discontinuous and cermet films. Physics of thin films, vol 8. Academic, New York, pp 99–168

    Google Scholar 

  28. Meiksin ZH, Hudzinski RA (1967) A theoretical study of the effect of elastic strain on the electrical resistance of thin metal films. J Appl Phys 38(11):4490–4494

    ADS  Google Scholar 

  29. Neugebauer CA (1960) Tensile properties of thin, evaporated gold films. J Appl Phys 31(6):1096–1101

    ADS  Google Scholar 

  30. Noskova NI, Volkova EI (2001) In situ study of deformation of nanocrystalline copper. Phys Metals Metallography 91(6):629–635

    Google Scholar 

  31. Odnodvorets LV, Protsenko SI, Chornous AM, Protsenko IYu (2007) Effect tenzochutlyvosti v metalevykh plivkovykh materialakh. Usp Fiz Met 8(2):109–156

    Google Scholar 

  32. Odnodvorets L, Protsenko S, Synashenko O, Velykodnyi D Protsenko I (2009) Electrophysical properties of Ni/V and Cr/Fe multilayer films. Cryst Res Technol 44(1):74–81

    Google Scholar 

  33. Parker RL, Krinsky A (1963) Electrical resistance-strain characteristics of thin evaporated metal films. J Appl Phys 34(9):2700–2708

    ADS  Google Scholar 

  34. Pozdnyakov VA, Glezer AM (2002) Structural mechanisms of plastic deformation in nanocrystalline materials. Phys Solid State 44(4):732–737

    ADS  Google Scholar 

  35. Protsenko SI (2009) Magnetodeformation effect in thin metal films. J Nano Electron Phys 1(2):5–7

    Google Scholar 

  36. Protsenko SI, Chornous AM (2003) Doslidgennya i prognoz tenzorezystyvnykh vlastyvostei plivkovykh system na osnovi Cr, Cu i Sc. Metallophyzika i noveishie technologii 25(5):587–601

    Google Scholar 

  37. Protsenko IYu, Odnodvorets LV, Chornous AM (1999) Electroconductivity and tensosensibility of multilayer films. Met Phys Adv Tech 18:47–59

    Google Scholar 

  38. Protsenko SI, Cheshko IV, Velykodnyi DV, Pazukha IM, Odnodvorets LV, Protsenko IYu, Synashenko OV (2007) Structurno-fazovyi stan, stabil’nist’ interfeisiv ta electrofizychni vlastyvosti dvosharovykh plivkovykh system. Usp Fiz Met 8(4):247–278

    Google Scholar 

  39. Protsenko SI, Velykodnyi DV, Kheraj VA, Desai MS, Panchal CJ, Protsenko IYu (2009) Electrophysical properties of Cu/Cr and Fe/Cr film systems within elastic and plastic deformation range. J Mater Sci 44(18):4905–4910

    ADS  Google Scholar 

  40. Protsenko SI, Synashenko OV, Zabila Y, Marzalek M (2011) Diffusion processes in nanoscale two-layer film systems based on Fe and Cu or Fe and Cr. J Surf Invest 5(4):787–790

    Google Scholar 

  41. Protsenko IYu, Odnodvorets LV, Tyschenko KV, Shumakova MO (2013) Features strain properties anomalous small of strain coefficient. J Mech Eng Technol 1(1):34–39

    Google Scholar 

  42. Rajanna K, Nayak MM (2000) Strain sensitivity and temperature behavior of invar alloy films. Mat Sci Eng B B77:288–292

    Google Scholar 

  43. Sadaiyandi K (2009) Size dependent Debye temperature and mean square displacements of nanocrystalline Au, Ag and Al. Mater Chem Phys 115:703–706

    Google Scholar 

  44. Sharma BK, Jain N, Srivastava R (1983) Strain coefficient of resistivity in thin metallic films. Helvetica Phys Acta 56:1093–1097

    Google Scholar 

  45. Synashenko OV, Tkach OP, Buryk IP, Odnodvorets LV, Protsenko SI, Shumakova NI (2009) Magnetoresistive properties of multilayer nanodimensional film systems. Probl Atomic Sci Technol 6:169–174

    Google Scholar 

  46. Tellier CR, Tosser AJ (1982) Size effects in thin films. ESPS, Amsterdam, 309 p

    Google Scholar 

  47. Tillier CR (1985) Effect of defect structure on the electrical conduction mechanism in metallic thin films. J Mater Sci 20(6):1901–1919

    ADS  Google Scholar 

  48. Tkach OP, Odnodvorets LV, Protsenko SI, Velykodnyi DV, Tyschenko KV, Protsenko IYu (2010) Mechanical properties of micron and nanodimensional metal films. J Nano Electron Phys 2(1):22–29

    Google Scholar 

  49. Tyschenko KV, Odnodvorets LV, Protsenko IYu (2012) Peculiarities of deformation dependence of the strain coefficient in metal films. Pramana—J Phys (in press)

    Google Scholar 

  50. Tyschenko KV, Pazukha IM, Shabelnyk TM, Protsenko IYu (2013) Electrophysical properties on nanocrystalline platinum thin films. J Nano Electron Phys 5(1) doi:01029-1-01029-5

    Google Scholar 

  51. Wang WL, Liao KJ, Hu CG (2003) Study on piezoresistive effect of diamond films under magnetic field. Sens Aсtuators A 108:55–58

    Google Scholar 

  52. Warkusz F (1980) Electrical and mechanical properties of thin metal films: size effects. Progr Surf Sci 10(3):287–382

    ADS  Google Scholar 

  53. Witt GR (1974) Some effect of strain and temperature on the resistance of thin gold-glass cermet films. Thin Solid Films 22:133–156

    ADS  Google Scholar 

  54. Zabila EO, Protsenko IYu (2005) Method of studying the tensoresistive properties of chrome films at relatively small and large deformations. Ukr J Phys 50(7):727–734

    Google Scholar 

  55. Zakharenko NI, Semen’ko MP (2007) Vliyanie magnitnogo polya na tensoresistivnyi effect v amorphnykh splavakh na osnovi zheleza. Phys Metals Metallography 104(2):150–154

    ADS  Google Scholar 

Download references

Acknowledgments

The work was carried out with financial support from the Ministry of Education and Science of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhyi I. Protsenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Protsenko, S., Odnodvorets, L., Protsenko, I. (2015). Future Strain Properties of Multilayer Film Materials. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Springer Proceedings in Physics, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-319-06611-0_28

Download citation

Publish with us

Policies and ethics