Skip to main content

Endohedral Fullerene Complexes. Which and How Many Small Molecules Can Be Inserted into Fullerenes and a Carbon Nanotube?

  • Conference paper
  • First Online:
Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 156))

Abstract

Endohedral fullerene complexes involving C60, C70, and C50H10 nanotubes, especially those containing small molecular guests inside, are reviewed and the calculations of their stability are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW (1997) Symmetry, space, stars, and C60 (Nobel lecture). Angew Chem Int Ed 36:1579–1593

    Google Scholar 

  2. Kroto HW (1992) C60: buckminsterfullerene, the celestial sphere that fell to earth. Angew Chem Int Ed 31:111–129

    Google Scholar 

  3. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163 doi:10.1038/318162a0

    Google Scholar 

  4. Heath JR, O’Brien SC, Zhang Q, Liu Y, Curl RF, Kroto HW, Tittel FK, Smalley RE (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107:7779–7780

    Google Scholar 

  5. Stoddart JF (1991) The third allotropic form of carbon. Angew Chem Int Ed Engl 30:70–71

    Google Scholar 

  6. Cong H, Yu B, Akasaka T, Lu X. (2013) Endohedral metallofullerenes: an unconventional core -shell coordination union. Coord Chem Rev 257:2880–2898

    Google Scholar 

  7. Lu X, Feng L, Akasaka T, Nagase S (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41:7723–7760

    Google Scholar 

  8. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113

    Google Scholar 

  9. Dodziuk H (2011) Endohedral fullerene complexes and in-out isomerism in perhydrogenated fullerenes. Why the carbon cages cannot be used as the hydrogen containers? In: Graovac A, Ori O, Cataldo F (eds) Mathematics and topology of fullerenes. Springer, Hamburg, pp 117–151

    Google Scholar 

  10. Pupysheva OV, Farajian AA, Yakobson BI (2008) Fullerene nanocage capacity for hydrogen storage. Nano Lett 8:767–774

    Google Scholar 

  11. Yang C-K (2007) Density functional calculation of hydrogen-filled C60 molecules. Carbon 45:2451–2453

    Google Scholar 

  12. Yang C-K (2008) Reply to the commentary on “density functional calculation of hydrogen-filled C60 molecules”. Carbon 46:705–705

    Google Scholar 

  13. Turker L, Erkoc S (2003) AM1 treatment of endohedrally hydrogen doped fullerene, nH2@C60. J Mol Struct 638:37–40

    Google Scholar 

  14. Turker L, Erkoc S (2006) Comment on “Modeling complexes of H2 molecules in fullerenes” by H. Dodziuk. Chem Phys Lett 426:222–223

    Google Scholar 

  15. Cioslowski J (1991) Endohedral chemistry: electronic structures of molecules trapped inside the C60 cage. J Am Chem Soc 113:4139–4141

    Google Scholar 

  16. Dodziuk H, Dolgonos G, Lukin O (2001) Molecular mechanics study of endohedral fullerene complexes with small molecules. Carbon 39:1907–1911

    Google Scholar 

  17. Murata M, Maeda S, Morinaka Y, Murata Y, Komatsu K (2008) Synthesis and reaction of fullerene C70 encapsulating two molecules of H2. J Am Chem Soc 130:15800–15801

    Google Scholar 

  18. Dodziuk H. (2005) Modeling complexes of H2 molecules in fullerenes. Chem Phys Lett 410:39–41

    Google Scholar 

  19. Korona T, Dodziuk H (2011) Small molecules in C60 and C70. Which complexes could be stabilized? J Chem Theory Comp 7:1476-1483. dx.doi.org/10.1021/ct200111a

    Google Scholar 

  20. Korona T, Hesselmann M, Dodziuk H (2009) Symmetry-adapted perturbation theory applied to endohedral fullerene complexes: a stability study of H2@C60 and 2H2@C60. J Chem Theory Comp 5:1585–1596

    Google Scholar 

  21. Dodziuk H, Korona T, Lomba E, Bores CJ (2012) A carbon nanotube container: complexes of C50H10 with small molecules. Chem. Theor. Comp. 8:4546–4555

    Google Scholar 

  22. Dresselhaus MS, Dresselhaus G, Eklund PC, P. C (1995) Science of fullerenes and carbon nanotubes. Academic, San Diego, pp. 1–2

    Google Scholar 

  23. Herzberg G (1945) Infrared and Raman spectra of polyatomic molecules. Lancaster Press, Lancaster, p. 12

    Google Scholar 

  24. Botchvar DE, Galpern EG (1973) About hypothetical systems: carbododecahedron, s-icosaedron and carbo-s-icosaedron (in Russian). Dokl. AN SSSR 209:610

    Google Scholar 

  25. Rohlfing EA, Cox DM, Kaldor A (1984) Production and characterization of supersonic carbon cluster beams. J Chem Phys 81:3322

    Google Scholar 

  26. Krätschmer W, Fostiropoulos K, Huffmann DR (1990) The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chem Phys Lett 170:167

    Google Scholar 

  27. Taylor R, Hare JP, Abdul-Sada AK, Kroto HW (1990) Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. Chem Commun 20:1423–1425

    Google Scholar 

  28. Yannoni CS, Bernier PP, Meier G, Salem JR (1991) NMR determination of the bond lengths in C60. J Am Chem Soc 113:3190–3192

    Google Scholar 

  29. Liu S, Lu YJ, Kappes MM, Ibers JA (1991) The structure of the C60 molecule-X-ray crystal structure determination of a twin at 110K. Science 254(5030):408–410

    Google Scholar 

  30. Dodziuk H, Nowinski KS (1998) ‘In’-‘out’ topological isomerism. Should rotaxanes and endohedral fullerene complexes be involved? Tetrahedron 54:2917–2930

    Google Scholar 

  31. Dodziuk H, Nowinski KS (1996) Horror vacui or topological in-out isomerism in perhydrogenated fullerenes. Part 1. C60H60 and monoalkylated perhydrogenated fullerenes. Chem Phys Lett 249:406–412

    Google Scholar 

  32. Dodziuk H (2007) Modeling the structure of fullerenes and their endohedral complexes involving small molecules with nontrivial topological properties. J Nanosci Nanotechnol 7:1102–1110

    Google Scholar 

  33. Komatsu K, Murata M, Murata Y (2005) Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307:238–240

    Google Scholar 

  34. Ge M, Nagel U, Hüvonen D, Room T, Mamone S, Levitt MH, Carravetta M, Murata Y, Komatsu K, Lei X, Turro NJ (2011) Interaction potential and infrared absorption of endohedral H2 in C60. J Chem Phys 135:114511

    Google Scholar 

  35. Tanabe F, Murata M, Murata Y, Komatsu K (2006) Nippon Kagakkai Koen Yokoshu 86:1282

    Google Scholar 

  36. Holleman I, Robyr P, Kentgens APM, Meier BH, Meijer G (1999) Motion of CO molecules in solid C60 probed by solid-state NMR. J Am Chem Soc 121:199–207

    Google Scholar 

  37. Peres T, Cao BP, Cui WD, Lifshitz C, Khong A, Cross RJ, Saunders M (2001) Some new diatomic molecule containing endohedral fullerenes. Int J Mass Spectr 210:241–247

    Google Scholar 

  38. Suetsuna T, Dragoe N, Harneit W, Weidinger A, Shimotani S, Ito S, Takagi H, Kitazawa K (2002) Separation of N2@C60 and N@C60. Chem Eur J 8:5079–5083

    Google Scholar 

  39. Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C60. Science 333:613–616

    Google Scholar 

  40. Zhang R, Murata M, Wakamiya A, Murata Y (2013) Synthesis and X-ray structure of endohedral fullerene C60 dimer encapsulating a water molecule in each C60 cage. Chem Lett 42:879–881

    Google Scholar 

  41. Goedde B, Waiblinger M, Jakes P, Weiden N, Dinse KP, Weidinger A (2001) “Nitrogen doped” C60 dimers (N@C60 -C60). Chem Phys Lett 334:12–17

    Google Scholar 

  42. Zhang J, Porfyrakis K, Morton JJL, Sambrook MR, Harmer J, Xiao L, Ardavan A, Briggs GAD (2008) Photoisomerization of a fullerene dimer. J Phys Chem C 112:2802–2804

    Google Scholar 

  43. Farrington BJ, Jevric M, Rance GA, Ardavan A, Khlobystov AN, Briggs GAD, Porfyrakis K (2012)Chemistry at the nanoscale: synthesis of an N@C60-N@C60 endohedral fullerene dimer. Angew Chem Int Ed 51:3587–3590

    Google Scholar 

  44. Plant SR, Jevric M, Morton JJL, Ardavan A, Khlobystov AN, Briggs GAD, Porfyrakis K (2013) A two-step approach to the synthesis of N@C60 fullerene dimers for molecular qubits. Chem Sci 4 :2971–2975

    Google Scholar 

  45. Mordkovich VZ (2000) The observation of large concentric shell fullerenes and fullerene-like nanoparticles in laser pyrolysis carbon blacks. Chem Mater 12:2813

    Google Scholar 

  46. Iijima S (1980) Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J Cryst Growth 50:675

    Google Scholar 

  47. Tan Y-Z, Xie ST, Huang RB, Zheng LS (2009) The stabilization of fused-pentagon fullerene molecules Nature Chem 1:450–460

    Google Scholar 

  48. Shustova NB, Popov AA, Newell BS, Miller SM, Anderson OP, Seppelt K, Bolskar RD, Boltalina OV, Strauss SH (2007) Discovering and verifying elusive fullerene cage isomers: structures of C2-p11-(C74-D 3h )(CF3)12 and C2-p11-(C78-D 3h )(CF3)12. Angew Chem Int Ed 46:4111–4114

    Google Scholar 

  49. Rapta P, Popov AA, Yang S, Dunsch L (2008) Charged states of Sc3N@C68: an in situ spectroelectrochemical study of the radical cation and radical anion of a non-IPR fullerene. J Phys Chem A 112:5858–5865

    Google Scholar 

  50. Takata M, Nishibori E, Sakata M, Wang CR, Shinohara H (2003) Sc2 dimer in IPR-violated C66 fullerene: a covalent bonded metallofullerene. Chem Phys Lett 372:512–518

    Google Scholar 

  51. Shi ZQ, Wu X, Wang CR, Lu X, Shinohara H (2006) Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage. Angew Chem Int Ed 45:2107–2111

    Google Scholar 

  52. Yang SF, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. Angew Chem Int Ed 46:1256–1259

    Google Scholar 

  53. Jimenez-Vazquez HA, Cross RJ, Saunders M, Poreda RJ (1994) Hot-atom incorporation of tritium atoms into fullerenes. Chem Phys Lett 229:111–114

    Google Scholar 

  54. Takata M, Umeda B, Nishibori E, Sakata M, Saito Z, Ohno M, Shinohara H (1995) Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 377:46

    Google Scholar 

  55. Patchkovskii S, Thiel WJ (1996) How does helium get into buckminsterfullerene? Am Chem Soc 118:7164

    Google Scholar 

  56. Pietzak B, Waiblinger M, Murphy TA, Weidinger A, Hohne M, Dietel E, Hirsch A (1998) Properties of endohedral N@C60 carbon. Carbon 36:613–615

    Google Scholar 

  57. Jakes P, Weiden N, Eichel RA, Gembus A, Dinse KP, Meyer C, Harneit W, Weidinger AJ (2002) Electron paramagnetic resonance investigation of endohedral fullerenes N@C70 in a liquid crystal. Magn Res 156:303–308

    Google Scholar 

  58. Giblin DE, Gross ML, Saunders M, Jiménez-Vázquez H, Cross RJ (1997) Incorporation of helium into endohedral complexes of C60 and C70 containing noble-gas atoms: a tandem mass spectrometry study. J Am Chem Soc 119:9883–9890 doi: 10.1021/ja971104 l

    Google Scholar 

  59. Khong A, Jiménez-Vázquez HA, Saunders M, Cross RJ, Laskin J, Peres T, Lifshitz C, Strongin R, Smith AB (1998) An NMR study of He2 inside C70. J Am Chem Soc 120:6380–6383

    Google Scholar 

  60. Laskin J, Peres T, Lifshitz C, Saunders M, Cross RJ, Khong A (1998) An artificial molecule of Ne2 inside C70. Chem Phys Lett 285:7

    Google Scholar 

  61. Morinaka Y, Sato S, Wakamiya A, Nikawa H, Mizorogi N, Fumiyuki T, Murata M, Komatsu K, Furukawa K, Kato T, Nagase S, Akasaka T, Murata Y (2013) X-ray observation of a helium atom and placing a nitrogen atom inside He@ C60 and He@C70. Nat Commun 4 art:1554, doi:10.1038/ncomms2574

    Google Scholar 

  62. Dodziuk H (2002) Among synthetic, supramolecular and theoretical chemistry: stabilization of short-lived species in “molecular” or “supramolecular flasks”. Int J Molec Sci 3:814–821

    Google Scholar 

  63. Dodziuk H (2009) Strained hydrocarbons: beyond the van’t Hoff and Le Bel hypothesis. Wiley-VCH, Weinheim, pp 449–458

    Google Scholar 

  64. Dellinger A, Zhou ZG, Connor J, Madhankumar AB, Pamujula S, Sayes CM, Kepley CL (2013) Application of fullerenes in nanomedicine: an update. Nanomedicine 8:1191–1208

    Google Scholar 

  65. Nitta N, Seko A, Sonoda A, Ohta S, Tanaka T, Takahashi M, Murata K, Takemura S, Sakamoto T, Tabata Y (2008) Is the use of fullerene in photodynamic therapy effective for atherosclerosis? Cardiovasc Intervent Rad 31:359–366

    Google Scholar 

  66. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomed 2:639–649

    Google Scholar 

  67. Cagle DW, Kennel SJ, Mirzadeh S, Alford JM, Wilson LJ (1999) In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc Natl Acad Sci U S A 96:5182–5187

    Google Scholar 

  68. Bolskar RD (2008) Medicinal applications of fullerenes. Nanomedicine 3:201–213

    Google Scholar 

  69. MacFarland DK, Walker KL, Lenk RP, Wilson SR, Kumar K, Kepley CL, Garbow JR (2008) Hydrochalarones: a novel endohedral metallofullerene platform for enhancing magnetic resonance imaging contrast. J Med Chem 51:3681–3683

    Google Scholar 

  70. Wilson LJ, Cagle DW, Thrash TP, Kennel SJ, Mirzadeh S, Alford JM, Ehrhardt GJ (1999) Metallofullerene drug design. Coord Chem Rev 192:199–207

    Google Scholar 

  71. Ibrahim M, Saleh NA, Elshemey WM, Elsayed AA (2010) Computational notes on fullerene based system as HIV-1 protease inhibitors. J Comput Theor Nanos 7:224–227

    Google Scholar 

  72. Kobayashi S, Mori S, Iida S, Ando H, Takenobu T, Taguchi Y, Fujiwara A, Taninaka A, Shinohara H, Yoshihiro IJ (2003) Conductivity and field effect transistor of La2@C80 metallofullerene. Am Chem Soc 125:8116–8117

    Google Scholar 

  73. Shibata K, Kubozono Y, Kanbara T, Hosokawa T, Fujiwara A, Ito. Y, Shinohara H (2004) Fabrication and characteristics of C84 fullerene field-effect transistor. Appl Phys Lett 84:2572–2574

    Google Scholar 

  74. Yasutake Y, Shi ZJ, Okazaki T, Shinohara H, Majima Y (2005) Single molecular orientation switching of an endohedral metallofullerene. Nano Lett 5:1057–1060

    Google Scholar 

  75. Ross RB, Cardona CM, Swain FB, Guldi DM, Sankaranarayanan SG, Van Keuren E, Holloway BC, Drees M (2009) Tuning conversion efficiency in metallo endohedral fullerene-based organic photovoltaic devices. Adv Funct Mat 19:2332–2337

    Google Scholar 

  76. Dao TT, Matsushima T, Murata H (2012) Highly stable fullerene memory transistors with an electron-trapping polymer. Org Electronics 2012 13:2709–2715

    Google Scholar 

  77. Benjamin SC, Ardavan AQ, Briggs GAD, Britz DA, Gunlycke D, Jefferson JH, Jones MAG, Leigh DF, Lovett BW, Khlobystov AN, Lyon S, Morton JJL, Porfyrakis K, Sambrook MR, Tyryshkin AM (2006) Towards a fullerene-based quantum computer. J Phys Condens Matter 18:S867–S883

    Google Scholar 

  78. Harneit W, Meyer C, Weidinger A, Suter D, Twamley J (2002) Quantum computer based on endohedral fullerenes. Phys. Stat. Solid. B 233:453

    Google Scholar 

  79. Twamley J (2003) Quantum-cellular-automata quantum computing with endohedral fullerenes. Phys Rev A 67 art no. 052318

    Google Scholar 

  80. Morinaka Y, Nobori M, Murata M, Wakamiya A, Sagawa T, Yoshikawa S, Murata Y (2013) Synthesis and photovoltaic properties of acceptor materials based on the dimerization of fullerene C60 for use in efficient polymer solar cells. Chem Commun 49:3670–3672

    Google Scholar 

  81. Li X, Zhang W, Wu Y, Mina C, Fang J (2013) Controllable threshold voltage of a pentacene field-effect transistor based on a double-dielectric structure. J Mater Chem1:12413–12416

    Google Scholar 

  82. Kurokawa Y, Ohno Y, Shimada T, Ishida M, Kishimoto S, Okazaki T, Shinohara H, Mizutani T, Jap J (2005) Fabrication and characterization of peapod field-effect transistors using peapods synthesized directly on Si substrate. Appl Phys Part 2 44:L1341–L1343

    Google Scholar 

  83. Prassides K, Dennis TJS, Christides C, Roduner E, Kroto HW, Taylor R, Walton DMR (1992) Mu@C70: monitoring the dynamics of fullerenes from inside the cage. J Phys Chem 96:10600

    Google Scholar 

  84. Komatsu K, Murata YJ (2004) Synthesis of fullerene derivatives with novel structures -liquid-phase versus solid-state reactions. Synth Org Chem Jpn 62:1138–1147

    Google Scholar 

  85. Hormann F, Hirsch A, Porfyrakis K, Briggs GAD (2011) Synthesis and magnetic properties of a nitrogen-containing fullerene dimer. Eur J Org Chem 117–121.

    Google Scholar 

  86. Li Y, Chen JY-C, Lei X, Lawler RG, Murata Y, Komatsu K, Turro NJ (2012) Comparison of nuclear spin relaxation of H2O@C60 and H2@C60 and their nitroxide derivatives. J Phys Chem Lett 3:1165–1168

    Google Scholar 

  87. Li Y, Lei X, Lawler RG, Murata Y, Komatsu K, Turro NJ (2011) Synthesis and characterization of bispyrrolidine derivatives of H2@C60: differentiation of isomers using 1H NMR spectroscopy of endohedral H2. Chem Commun 47:2282–2284

    Google Scholar 

  88. Cardona CM, Kitaygorodskiy A, Ortiz AL, Herranz MA, Echegoyen L (2005) The first fulleropyrrolidine derivative of Sc3N@C80: pronounced chemical shift differences of the geminal protons on the pyrrolidine ring. J Org Chem 70:5092–5097

    Google Scholar 

  89. Dodziuk H (2002) In Introduction to supramolecular chemistry; Kluwer: Dordrecht, pp 27-39, 275–284

    Google Scholar 

  90. Haussmann PC, Stoddart JF (2009) Synthesizing interlocked molecules dynamically. Chem Rec 9:136–154

    Google Scholar 

  91. Stoddart JF (2009) The chemistry of the mechanical bond. Chem Soc Rev 38:1802–1820

    Google Scholar 

  92. Rowan SJ, Cantrill SJ, Cousins GRL, Sanders JKM, Stoddart JF (2002) Dynamic covalent chemistry. Angew Chem Int Ed Engl 41:898–952

    Google Scholar 

  93. Nishibori E, Narioka S, Takata M, Sakata M, Inoue T, Shinohara H Jap J (2006) A C2 molecule entrapped in the pentagonal-dodecahedral Y2 cage in Y2C2@C82(III). Appl Phys Part 1 46:881–891

    Google Scholar 

  94. Nishibori E, Narioka S, Takata M, Sakata M, Inoue T, Shinohara H (2006) A C2 molecule entrapped in the pentagonal-dodecahedral Y2 cage in Y2C2@C82(III). ChemPhysChem 7:345–348

    Google Scholar 

  95. Saunders M, Cross RJ, Shimshi R, Jimenez-Vazquez HA, Khong A (1996) Noble gas atoms inside fullerenes. Science 271:1693–1697

    Google Scholar 

  96. Komatsu K, Murata M, Murata Y (2005) In: Kuzmany H (ed) XIX international winterschool on electronic properties of novel materials. Kirchberg, Tirol

    Google Scholar 

  97. Cai T, Xu L, Gibson HW, Dorn HC, Chancellor CJ, Olmstead MM, Balch AL (2007) Sc3N@C78: encapsulated cluster regio-control of adduct docking on an ellipsoidal metallofullerene sphere. J Am Chem Soc 129:10795–10800

    Google Scholar 

  98. Yang SF, Dunsch L (2006) Di- and tridysprosium endohedral metallofullerenes with cages from C94 to C100. Angew Chem Int Ed 45:1299–1302

    Google Scholar 

  99. Stevenson S, Fowler PW, Heine T, Duchamp JC, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn HC (2000) A stable non-classical metallofullerene family. Nature 408:427–428

    Google Scholar 

  100. Taylor R, Avent AG, Dennis TJ, Hare JP, Kroto HW, Holloway JH, Hope EG, Langley GJ (1992) No lubricants from fluorinated C60. Nature 355:27

    Google Scholar 

  101. Lopez-Gejo J, Marti AA, Ruzzi M, Jockush S, Komatsu K, Tanabe F, Murata Y, Turro NJ (2007) Can H2 inside C60 communicate with the outside world? J Am Chem Soc 129:14554

    Google Scholar 

  102. Varadwaj AVaradwaj PR (2012) Can a single molecule of water be completely isolated within the subnano-space inside the fullerene C60 cage? A quantum chemical prospective. Chem Eur J 18:15345–15360

    Google Scholar 

  103. Beduz C, Carravetta M, Chen J, Concistre M, Denning M, Frunzi M, Horsewill AJ, Johannessen O, Lawler R, Lei X, Levitt MH, Li Y, Mamone S, Murata Y, Nagel U, Nishida T, Ollivier J, Rols S, Room T, Sarkar R, Turro NJ, Yang Y (2012) Quantum rotation of ortho and para-water encapsulated in a fullerene cage. Proc Natl Acad Sci U S A 109:12894–12898

    Google Scholar 

  104. Concistre M, Mamone S, Denning M, Pileo G, Lei S, Li Y, Carravetta M, Turro NJ, Levitt MH (2013) Anisotropic nuclear spin interactions in H2O@C60 determined by solid-state NMR. Phil Trans R Soc A 371:20120102

    Google Scholar 

  105. Chen JY-C, Li Y, Frunzi M, Lei X, Murata Y, Lawler RG, Turro NJ (2013) Phil Trans R Soc A 371:20110628

    Google Scholar 

  106. Room T, Peedu L, Ge M, Hüvonen D, Nagel U, Ye S, Xu M, Bacic Z, Mamone S, Levitt MH, Carravetta M, Chen J, Lei X, Turro NJ, Murata Y, Komatsu K (2013) Recognition of hydrogen isotopomers by an open-cage fullerene. Phil Trans R Soc A 371:20110631

    Google Scholar 

  107. Horsewill AJ, Panesar KS, Rols S, Ollivier J, Johnson MR, Carravetta M, Mamone S, Levitt MH, Murata Y, Komatsu K, Chen JY-C, Johnson JA, Lei X, Turro NJ (2012) Inelastic neutron scattering investigations of the quantum molecular dynamics of a H2 molecule entrapped inside a fullerene cage. Phys Rev B 85:205440

    Google Scholar 

  108. Turro NJ, Mart AA, Chen JY-C, Jockusch S, Lawler RG, Ruzzi M, Sartori E, Chuang S-C, Komatsu K, Murata Y (2008) Demonstration of a chemical transformation inside a fullerene. The reversible conversion of the allotropes of H2@C60. J Am Chem Soc 130:10506

    Google Scholar 

  109. Frunzi M, Jockusch S, Chen JY-C, Calderon RMK, Lei X, Murata Y, Komatsu K, Guldi DM, Lawler RG, Turro NJ (2011) A photochemical on-off switch for tuning the equilibrium mixture of H2 nuclear spin isomers as a function of temperature. J Am Chem Soc 133:14232–14235

    Google Scholar 

  110. Yoon M, Yang SY, Wang E, Zhang ZY (2007) Charged fullerenes as high-capacity hydrogen storage media. Nano Lett 7:2578–2583

    Google Scholar 

  111. Yoon M, Yang SY, Zhang ZY (2009) Interaction between hydrogen molecules and metallofullerenes. J Chem Phys 131 art 64707

    Google Scholar 

  112. Arai M, Utsumi S, Kanamaru M, Urita K, Fujimori T, Yoshizawa N, Noguchi D, Nishiyama K, Hattori Y, Okino F, Ohba T, Tanaka H, Kanoh H, Kaneko K (2009) Enhanced hydrogen adsorptivity of single-wall carbon nanotube bundles by one-step C60-pillaring method. Nano Lett 9:3694–3698

    Google Scholar 

  113. Lan JH, Cao DP, Wang WC (2009) Li12Si60H60 fullerene composite: a promising hydrogen storage medium. ACS Nano 3:3294–3300

    Google Scholar 

  114. Liu W, Zhao YH, Li Y, Lavernia EJ, Jiang Q (2009) A reversible switch for hydrogen adsorption and desorption: electric fields. PhysChemChemPhys 11:9233–9240

    Google Scholar 

  115. Saunders M, Jimenez-Vazquez HA, Cross RJ, Poreda RJ (1993) Stable compounds of helium and neon: He@C60 and Ne@C60. Science 259:1428

    Google Scholar 

  116. Becker L, Poreda RJ, Bunch TE (2000) Fullerenes: an extraterrestrial carbon carrier phase for noble gases. Proc Natl Acad Sci U S A 97:2979–2983

    Google Scholar 

  117. Peng RF, Chu SJ, Huang YM, Yu HJ, Wang TS, Jin B, Fu YB, Wang CR (2009) Preparation of He@C60 and He2@C60 by an explosive method. J Mat Sci 19:3602–3605

    Google Scholar 

  118. Krapp A, Frenking G (2007) Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). Chem Eur J 13:8256–8270

    Google Scholar 

  119. Amusia MY, Chernysheva LV, Liverts EZ (1912) Generalized oscillator strength of endohedral molecules. Int J Quant Chem 112:3119–3130

    Google Scholar 

  120. Scott LT, Jackson EA, Zhang Q, Steinberg BD, Bancu M, Li BJ (2011) A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis. Am Chem Soc 134:107–110

    Google Scholar 

  121. Mercado BQ, Chen N, Rodriguez-Fortea NA, Mackey MA, Stevenson S, Echegoyen L, Poblet JM, Olmstead MM, Balch AL (2011) The shape of the Sc2(μ2-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc22-S)@C s (6)-C82 and Sc22-S)@C 3v (8)-C82. J Am Chem Soc 133:6752–6760, 10.1021/ja200289w

    Google Scholar 

  122. Akasaka T, Nagase S (eds) (2002) Endofullerenes: a new family of carbon clusters. Kluwer, Dordrecht

    Google Scholar 

  123. Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerenes cages. Acc Chem Res 43:92–102

    Google Scholar 

  124. Chaur MN, Melin F, Ortiz AL, Echegoyen L (2009) Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew Chem Int Ed 48:7514–7538

    Google Scholar 

  125. Che Y, Yang H, Wang Z, Jin H, Liu Z, Lu C, Zuo T, Dorn HC, Beavers CM, Olmstead MM, Balch AL (2009) Isolation and structural characterization of two very large, and largely empty, endohedral fullerenes: Tm@C 3v -C94 and Ca@C 3v -C94. Inorg Chem 6004–6010

    Google Scholar 

  126. Jin H, Yang H, Yu M, Liu Z, Beavers CM, Olmstead MM, Balch AL, Dorn HC (2012) Single samarium atoms in large fullerene cages. Characterization of two isomers of Sm@C92 and four isomers of Sm@C94 with the X-ray crystallographic identification of Sm@C 1 (42)-C92, Sm@C s (24)-C92, and Sm@C 3v (134)-C94. J Am Chem Soc 134:10933–10941 doi: 10.1021/ja302859r

    Google Scholar 

  127. Mercado BQ, Jiang A, Yang H, Wang Z, Jin H, Liu Z, Olmstead MM, Balch AL (2009) Isolation and structural characterization of the molecular nanocapsule Sm2@D 3d (822)-C104. Angew Chem Int Ed 130:9114–9116. doi: 10.1002/anie.200904662

    Google Scholar 

  128. Beavers CM, Jin H, Yang H, Wang Z, Wang X, Ge H, Liu Z, Mercado BQ, Olmstead MM, Balch AL (2011) Very large, soluble endohedral fullerenes in the series La2C90 to La2C138: isolation and crystallographic characterization of La2@D 5 (450)-C100. J Am Chem Soc 133:15338–15341. doi: 10.1021/ja207090e

    Google Scholar 

  129. Xu W, Feng L, Calvaresi M, Liu J, Liu Y, Niu B, Shi Z, Lian Y Zerbetto F (2013) An experimentally observed trimetallofullerene Sm3@I h -C80: encapsulation of three metal atoms in a cage without a nonmetallic mediator. J Am Chem Soc 135:4187–4190

    Google Scholar 

  130. Wang CR, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2001) A scandium carbide endohedral metallofullerene Sc2C2@C84. Angew Chem Int Ed 40:397–399

    Google Scholar 

  131. Wakahara T, Sakuraba A, Iiduka Y, Okamura M, Tsuchiya T, Maeda Y, Akasaka T, Okubo S, Kato T, Kobayashi K, Nagase S, Kadish KM (2004) Chem Phys Lett 398:553–556

    Google Scholar 

  132. Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu MTH, Mizorogi N, Kobayashi K (2005) Sc3@C82 structural determination of metallofullerene Sc3@C82 revisited: a surprising finding. J Am Chem Soc 127:12500–12505

    Google Scholar 

  133. Yang H, Lu CX, Liu ZY, Che YL, Olmstead MM, Balch AL (2008) Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal-carbide encapsulated inside a large fullerene cage. J Am Chem Soc 130:17296–17300

    Google Scholar 

  134. Chaur MN, Anthans AJ, Echegoyen L (2008) Lantanide nitrides in C84, C88, C92 and C96. Tetrahedron 64:11387–11393

    Google Scholar 

  135. Chaur MN, Melin F, Elliott B, Kumbhar A, Athans AJ, Echegoyen L (2008) New M3N@C2n endohedral metallofullerene families (M = Nd, Pr, Ce; n=40-53): Expanding the preferential templating of the C88 cage and approaching the C96 cage. Chem Eur J 14:4594–4599

    Google Scholar 

  136. Chaur MN, Valencia R, Rodríguez-Fortea A, Poblet JM, Echegoyen L (2008) Trimetallic nitride endohedral fullerenes: experimental and theoretical evidence for the M3N6+@C6− 2n model. Angew Chem Int Ed 48:1425–1428

    Google Scholar 

  137. Campanera JM, Bo C, Olmstead MM, Balch AL, Poblet JM (2002) Bonding within the endohedral fullerenes Sc3N@C78 and Sc3N@C80 as determined by density functional calculations and reexamination of the crystal structure of {Sc3N@C78}center dot Co(OEP)center dot 1.5(C6H6)center dot 0.3(CHCl3). J Phys Chem A 106:12356–12364

    Google Scholar 

  138. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Balch AL, Dorn HC (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57

    Google Scholar 

  139. Tarabek J, Yang S, Dunsch L (2009) Redox properties of mixed lutetium/yttrium nitride custerfullerenes: endohedral LuxY3-xN@C80(I) (x=0-3) compounds.ChemPhysChem 10:1037–1043

    Google Scholar 

  140. Wang CR, Zuo TM, Olmstead MM, Duchamp JC, Glass TE, Cromer F, Balch AL, Dorn HC (2006) Preparation and structure of CeSc2N@C80: An icosahedral carbon cage enclosing an acentric CeSc2N unit with buried f electron spin. J Am Chem Soc 128, art. no. JA061434I

    Google Scholar 

  141. Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ, Olmstead MM, Balch AL (2008) A distorted tetrahedral metal oxide cluster inside an icosaedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(m3-O)2@I h -C80. J Am Chem Soc 130:11844–11845

    Google Scholar 

  142. Beavers CM, Chaur MN, Olmstead MM, Echegoyen L, Balch AL (2009) Non-IPR C78 large metal ions in a relatively small fullerene cage: the structure of Gd3N@C2(22010)-C78 departs from the isolated pentagon rule. J Am Chem Soc 131:11519–11524

    Google Scholar 

  143. Gimenez-Lopez MD, Gardener JA, Shaw AQ, Iwasiewicz-Wabnig A, Porfyrakis K, Balmer C, Dantelle G, Hadjipanayi M, Crossley A, Champness NR, Castell MR, Briggs GAD, Khlobystov AN (2010) Endohedral metallofullerenes in self-assembled monolayers. Phys Chem Chem Phys 12:123–131

    Google Scholar 

  144. Wang T, Feng L, Wu J, Xu W, Xiang J, Tan K, Ma Y, Zheng J, Jiang L, Lu X, Shu C, Wang C (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-I h . J Am Chem Soc 132:16362–16364

    Google Scholar 

  145. Wu J, Wang T, Ma Y, Jiang L, Shu C, Wang C (2011) Synthesis, Isolation, Characterization, and Theoretical Studies of Sc3NC@C78-C 2 . J Phys Chem C 115:23755–23759. doi:10.1021/jp2081929

    Google Scholar 

  146. Mercado BQ, Olmstead MM, Beavers CM, Easterling ML, Stevenson S, Mackey MA, Coumbe CE, Phillips JD, Phillips JP, Poblet JM, Balch AL (2010) A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc4(m3-O)2@I h -C80. Chem Commun 279–281

    Google Scholar 

  147. Chen N, Chaur MN, Moore C, Pinzon JR, Valencia R, Fortea AR, Poblet JM, Echegoyen L (2010) Synthesis of a new endohedral fullerene family, Sc2S@C2n (n = 40 -50) by the introduction of SO2. Chem Commun 46:4818–4820

    Google Scholar 

  148. Krause M, Ziegs. F, Popov AA, Dunsch L (2007) Entrapped bonded hydrogen in a fullerene: the five-atom cluster Sc3CH in C80. ChemPhysChem 8:537–540

    Google Scholar 

  149. Fu W, Zhang J, Fuhrer T, Champion H, Furukawa K, Kato T, Mahaney JE, Burke BG, Williams KA, Walker K, Dixon C, Ge JC, Shu CY, Harich K, Dorn HC (2011) Gd2@C79N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J Am Chem Soc 133:9741–9750. doi:10.1021/ja202011u

    Google Scholar 

  150. Zuo TM, Xu LS, Beavers CM, Olmstead MM, Fu WJ, Crawford D, Balch AL, Dorn HC (2008) M2@C79N (M = Y, Tb): Isolation and characterization of stable endohedral metallofullerenes exhibiting M-M bonding interactions inside aza[80]fullerene cages. J Am Chem Soc 130:12992–12997

    Google Scholar 

  151. Rubin Y, Jarrosson T, Wang W, Bartberger MD, Houk KN, Schick G, Saunders M, Cross RJ (2001) First opened fullerene with H2 and He. Angew Chem Int Ed 40:1543–1546

    Google Scholar 

  152. Murata Y, Chuang SC, Tanabe F, Murata M, Komatsu K (2013) Recognition of hydrogen isotopomers by an open-cage fullerene. Philos Trans A Math Phys Eng Sci. doi:10.1098/rsta.2011.0629

    Google Scholar 

  153. Xiao Z, Yao JY, Yang DZ, Wang FD, Huang SH, Gan LB, Jia ZS, Jiang ZP, Yang XB, Zheng B, Yuan G, Zhang SW, Wang ZM (2007) Synthesis of [59]fullerenones through peroxide-mediated stepwise cleavage of fullerene skeleton bonds and X-ray structures of their water-encapsulated open-cage complexes. J Am Chem Soc 129:16149–16162

    Google Scholar 

  154. Iwamatsu S-I, Uozaki T, Kobayashi K, Re S, Nagase S, Murata S (2004) Bowl-shaped fullerene encapsulates a water into the cage. J Am Chem Soc 126:2668–2669

    Google Scholar 

  155. Iwamatsu S, Murata S (2004) H2O@open-cage fullerene C60: control of encapsulation property and the first mass spectroscopic identification. Tetrah Lett 45:6391–6394

    Google Scholar 

  156. Stanisky CM, Cross RJ, Saunders M (2009) Putting atoms and molecules into chemically opened fullerenes. J Am Chem Soc 131:3392–3395

    Google Scholar 

  157. Iwamatsu SI, Stanisky CM, Cross RJ, Saunders M, Mizorogi N, Nagase S, Murata S (2006) CO in opened fullerene. Angew Chem Int Ed 45:5337–5340

    Google Scholar 

  158. Whitener Jr KE, Frunzi M, Iwamatsu S-I, Murata S, Cross RJ, Saunders M (2008) Ammonia in an open-cage [60]fullerene. J Am Chem Soc 13996–13999

    Google Scholar 

  159. Whitener Jr KE, Cross RJ, Saunders M, Iwamatsu S-I, Murata S, Mizorogi N, Nagase S (2009) Methane in an open-cage [60]fullerene. J Am Chem Soc 131:6338–6339

    Google Scholar 

  160. Jeziorski B, Moszynski R, Szalewicz K (1994) SAPT perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1887–1930

    Google Scholar 

  161. Szalewicz K, Patkowski K, Jeziorski B (2005) Intermolecular interactions via perturbation theory: from diatoms to biomolecules. Structure and Bonding 116:43–117

    Google Scholar 

  162. Jansen G (2013) Symmetry-adapted perturbation theory based on density functional theory for noncovalent interactions. Wiley Interdisc Rev: Comp Mol Sci. doi: 10.1002/wcms.1164

    Google Scholar 

  163. Szalewicz K, Jeziorski B (2007) Symmetry-adapted perturbation theory of intermolecular interactions. In: Schreiner S (ed) Molecular interactions —from van derWaals to strongly Bound complexes. Wiley, Chichester, pp 3–43

    Google Scholar 

  164. Ugarte D (1992) Curling and closure of graphitic networks under electron beam irradiation. Nature 359:707

    Google Scholar 

  165. Terrones H, Terrones M (1997) (Tetrahedral C264@C660@C1248) The transformation of polyhedral particles into graphitic onions. J Phys Chem Solids 38:1789–1796

    Google Scholar 

  166. Dodziuk H, Dolgonos G, Lukin O (2000) Ease of formation of nested fullerenes. Chem Phys Lett 329:351–356

    Google Scholar 

  167. Zimmermann U, Malinowski N, Näher U, Frank S, Martin TP (1994) Multilayer metal coverage of fullerene molecules. Phys Rev Lett 72:3542–3545

    Google Scholar 

  168. Rafique MMA, Iqbal JJ (2011) Production of carbon nanotubes by different routes—-a review. Encaps Adsorption Scie 1:29–34

    Google Scholar 

  169. Bystrzejewski M, Rümmeli MH, Lange H, Huczko A, Baranowski P, Gemming T, Pichler T (2008) Single-walled carbon nanotubes synthesis: a direct comparison of laser ablation and carbon arc routes. J Nanosci Nanotechnol 8:6178–6186

    Google Scholar 

  170. Sternfeld T, Hoffman RE, Saunders M, Cross RJ, Syamala MS, Rabinovitz M (2002) Two helium atoms inside fullerenes: probing the internal magnetic field in C60 6- and C70 6. J Am Chem Soc 124:8786–8787

    Google Scholar 

  171. Dietel E, Hirsch A, Pietzak B, Waiblinger R, Lips K, Weidinger A, Gruss A, Dinse KP (1999) Atomic nitrogen encapsulated in fullerenes: effects of cage variations. J Am Chem Soc 121:2432–2437

    Google Scholar 

  172. Naydenov B, Spudat C, Harneit W, Süss HI, Hulliger J, Nuss J, Jansen M (2006) Ordered inclusion of endohedral fullerenes N@C60 and P@C60 in a crystalline matrix. Chem Phys Lett 424:327–332

    Google Scholar 

  173. Mauser H, Hommes NJRV, Clark T, Hirsch A, Pietzak B, Weidinger A, Dunsch L (1997) Stabilization of atomic nitrogen inside C60. Angew Chem Int Ed 36:2835–2838

    Google Scholar 

  174. Cao BP, Peres T, Lifshitz C, Cross RJ, Saunders M (2006) Kinetic energy release of C70 + and its endohedral cation N@C70 +: Activation energy for N extrusion. Chem Eur J 12:2113–2221

    Google Scholar 

  175. Grose JE, Tam ES, Timm C, Scheloske M, Ulgut B, Parks JJ, Abruna HD, Harneit W, Ralph DC (2008) Tunnelling spectra of individual magnetic endofullerene molecules. Nature Mat 7:884–889

    Google Scholar 

  176. Scheloske M, Naydenov B, Meyer C, Harneit W (2006) Synthesis and functionalization of fullerenes encapsulating atomic phosphorus. Isr J Chem 46:407–412

    Google Scholar 

  177. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon, Oxford

    Google Scholar 

  178. Koshland DE Jr (1994) The key-lock theory and the induced fit theory. Angew Chem Int Ed 33:2375–2378

    Google Scholar 

  179. Akasaka T, Nagase S, Kobayashi K, Waelchli M, Yamamoto K, Funasaka H, Kako M, Hoshino T, Erata T (1997) 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew Chem Int Ed Engl 36:1643

    Google Scholar 

  180. Xu J, Tsuchiya T, Hao C, Wakahara T, Mi W, Gu Z, Akasaka T (2006) Dynamics structure determination of a missing-caged metallofullerene: Yb@C74 (II) and the dynamic motion of the encaged ytterbium ion. Chem Phys Lett 419:44–47

    Google Scholar 

  181. Delaney P, Greer JC (2004) C60 as a Faraday cage. Appl Phys Lett 84:431–433

    Google Scholar 

  182. Lips K, Waiblinger M, Pietzak B, Weidinger A (2000) Atomic nitrogen encapsulated in fullerenes: proof of an ideal chemical Faraday cage. Mol Mater 13:217–224

    Google Scholar 

  183. Zope RR (2008) Electronic structure and static dipole polarizability of C60@C240. J Phys B 41 art no. 085101

    Google Scholar 

  184. Sauvage J-P, Dietrich-Buchecker CO (1999) Molecular catenanes, rotaxanes and knots. A journey through the world of molecular topology. Wiley-VCH, Weinheim, pp 107–142

    Google Scholar 

  185. Watanabe N, Furusho Y, Kihara N, Takata T, Kinbara K, Saigo K (2001) Chemical modification of amide-based catenanes and rotaxanes II. Synthesis of tertiary amine [2]catenanes and [2] rotaxanes via N-methylation followed by borane reduction of secondary amide. Bull Chem Soc Japan 74:149–155

    Google Scholar 

  186. Vignon SA, Stoddart JF (2005) Exploring dynamics and stereochemistry in mechanically-interlocked compounds. Collect Czech Chem Commun 70:1493–1576

    Google Scholar 

  187. Peera A, Saini RK, Alemany LB, Billups WE, Saunders M, Khong A, Syamala MS, Cross RJ (2003) Formation, isolation, and spectroscopic properties of some isomers of C60H38, C60H40, C60H42, and C60H44 —Analysis of the effect of the different shapes of various helium-containing hydrogenated fullerenes on their 3He chemical shifts. Eur J Org Chem 21:4140–4145

    Google Scholar 

  188. Rosenthal J, Schuster DI, Cross RJ, Khong A (2006) 3He NMR as a sensitive probe of fullerene reactivity: [2+2] Photocycloaddition of 3-methyl-2-cyclohexenone to C70. J Org Chem 71:1191–1199

    Google Scholar 

  189. Sternfeld T, Saunders M, Cross RJ, Rabinovitz M (2003) The inside story of fullerene anions: a3He NMR aromaticity probe. Angew Chem Int Ed 42:3136–3139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Dodziuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dodziuk, H. (2015). Endohedral Fullerene Complexes. Which and How Many Small Molecules Can Be Inserted into Fullerenes and a Carbon Nanotube?. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Springer Proceedings in Physics, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-319-06611-0_1

Download citation

Publish with us

Policies and ethics