Skip to main content

Deferentially Private Tagging Recommendation Based on Topic Model

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8443))

Included in the following conference series:

Abstract

Tagging recommender system allows Internet users to annotate resources with personalized tags and provides users the freedom to obtain recommendations. However, It is usually confronted with serious privacy concerns, because adversaries may re-identify a user and her/his sensitive tags with only a little background information. This paper proposes a privacy preserving tagging release algorithm, PriTop, which is designed to protect users under the notion of differential privacy. The proposed PriTop algorithm includes three privacy preserving operations: Private Topic Model Generation structures the uncontrolled tags, Private Weight Perturbation adds Laplace noise into the weights to hide the numbers of tags; while Private Tag Selection finally finds the most suitable replacement tags for the original tags. We present extensive experimental results on four real world datasets and results suggest the proposed PriTop algorithm can successfully retain the utility of the datasets while preserving privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Enhancing privacy and preserving accuracy of a distributed collaborative filtering. In: RecSys (2007)

    Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: STOC, pp. 609–618 (2008)

    Google Scholar 

  4. Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “You might also like:” privacy risks of collaborative filtering. In: SP (2011)

    Google Scholar 

  5. Canny, J.: Collaborative filtering with privacy. In: S&P 2002, pp. 45–57. IEEE (2002)

    Google Scholar 

  6. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1), 86–95 (2011)

    Article  Google Scholar 

  7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of recent developments. ACM Comput. Surv. (2010)

    Google Scholar 

  9. Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS 2007, pp. 94–103 (2007)

    Google Scholar 

  11. Parra-Arnau, J., Perego, A., Ferrari, E., Forne, J., Rebollo-Monedero, D.: Privacy-preserving enhanced collaborative tagging. IEEE Transactions on Knowledge and Data Engineering 99(PrePrints), 1 (2013)

    Google Scholar 

  12. Polat, H., Du, W.: ICDM, pp. 625–628 (November 2003)

    Google Scholar 

  13. Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A.Y., Karypis, G.: Privacy risks in recommender systems. IEEE Internet Computing 5(6), 54–62 (2001)

    Article  Google Scholar 

  14. Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Handbook of Latent Semantic Analysis, vol. 427(7), pp. 424–440 (2007)

    Google Scholar 

  15. Zhan, J., Hsieh, C.-L., Wang, I.-C., Hsu, T.S., Liau, C.-J., Wang, D.-W.: Privacy-preserving collaborative recommender systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C 40(4), 472–476 (2010)

    Article  Google Scholar 

  16. Zhu, T., Li, G., Ren, Y., Zhou, W., Xiong, P.: Differential privacy for neighborhood-based collaborative filtering. In: ASONAM (2013)

    Google Scholar 

  17. Zhu, T., Li, G., Ren, Y., Zhou, W., Xiong, P.: Privacy preserving for tagging recommender systems. In: The 2013 IEEE/WIC/ACM International Conference on Web Intelligence (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, T., Li, G., Zhou, W., Xiong, P., Yuan, C. (2014). Deferentially Private Tagging Recommendation Based on Topic Model. In: Tseng, V.S., Ho, T.B., Zhou, ZH., Chen, A.L.P., Kao, HY. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8443. Springer, Cham. https://doi.org/10.1007/978-3-319-06608-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06608-0_46

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06607-3

  • Online ISBN: 978-3-319-06608-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics