Abstract
Tagging recommender system allows Internet users to annotate resources with personalized tags and provides users the freedom to obtain recommendations. However, It is usually confronted with serious privacy concerns, because adversaries may re-identify a user and her/his sensitive tags with only a little background information. This paper proposes a privacy preserving tagging release algorithm, PriTop, which is designed to protect users under the notion of differential privacy. The proposed PriTop algorithm includes three privacy preserving operations: Private Topic Model Generation structures the uncontrolled tags, Private Weight Perturbation adds Laplace noise into the weights to hide the numbers of tags; while Private Tag Selection finally finds the most suitable replacement tags for the original tags. We present extensive experimental results on four real world datasets and results suggest the proposed PriTop algorithm can successfully retain the utility of the datasets while preserving privacy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Enhancing privacy and preserving accuracy of a distributed collaborative filtering. In: RecSys (2007)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)
Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: STOC, pp. 609–618 (2008)
Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “You might also like:” privacy risks of collaborative filtering. In: SP (2011)
Canny, J.: Collaborative filtering with privacy. In: S&P 2002, pp. 45–57. IEEE (2002)
Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1), 86–95 (2011)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)
Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of recent developments. ACM Comput. Surv. (2010)
Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS 2007, pp. 94–103 (2007)
Parra-Arnau, J., Perego, A., Ferrari, E., Forne, J., Rebollo-Monedero, D.: Privacy-preserving enhanced collaborative tagging. IEEE Transactions on Knowledge and Data Engineering 99(PrePrints), 1 (2013)
Polat, H., Du, W.: ICDM, pp. 625–628 (November 2003)
Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A.Y., Karypis, G.: Privacy risks in recommender systems. IEEE Internet Computing 5(6), 54–62 (2001)
Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Handbook of Latent Semantic Analysis, vol. 427(7), pp. 424–440 (2007)
Zhan, J., Hsieh, C.-L., Wang, I.-C., Hsu, T.S., Liau, C.-J., Wang, D.-W.: Privacy-preserving collaborative recommender systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C 40(4), 472–476 (2010)
Zhu, T., Li, G., Ren, Y., Zhou, W., Xiong, P.: Differential privacy for neighborhood-based collaborative filtering. In: ASONAM (2013)
Zhu, T., Li, G., Ren, Y., Zhou, W., Xiong, P.: Privacy preserving for tagging recommender systems. In: The 2013 IEEE/WIC/ACM International Conference on Web Intelligence (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhu, T., Li, G., Zhou, W., Xiong, P., Yuan, C. (2014). Deferentially Private Tagging Recommendation Based on Topic Model. In: Tseng, V.S., Ho, T.B., Zhou, ZH., Chen, A.L.P., Kao, HY. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8443. Springer, Cham. https://doi.org/10.1007/978-3-319-06608-0_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-06608-0_46
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06607-3
Online ISBN: 978-3-319-06608-0
eBook Packages: Computer ScienceComputer Science (R0)