Two Sides of a Coin: Separating Personal Communication and Public Dissemination Accounts in Twitter

  • Peifeng Yin
  • Nilam Ram
  • Wang-Chien Lee
  • Conrad Tucker
  • Shashank Khandelwal
  • Marcel Salathé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8443)

Abstract

There are millions of accounts in Twitter. In this paper, we categorize twitter accounts into two types, namely Personal Communication Account (PCA) and Public Dissemination Account (PDA). PCAs are accounts operated by individuals and are used to express that individual’s thoughts and feelings. PDAs, on the other hand, refer to accounts owned by non-individuals such as companies, governments, etc. Generally, Tweets in PDA (i) disseminate a specific type of information (e.g., job openings, shopping deals, car accidents) rather than sharing an individual’s personal life; and (ii) may be produced by non-human entities (e.g., bots). We aim to develop techniques for identifying PDAs so as to (i) facilitate social scientists to reduce “noise” in their study of human behaviors, and (ii) to index them for potential recommendation to users looking for specific types of information. Through analysis, we find these two types of accounts follow different temporal, spatial and textual patterns. Accordingly we develop probabilistic models based on these features to identify PDAs. We also conduct a series of experiments to evaluate those algorithms for cleaning the Twitter data stream.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodnar, T., Salathé, M.: Validating models for disease detection using twitter. In: WWW, pp. 699–702 (2013)Google Scholar
  2. 2.
    Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Tran. on IST 2, 27:1–27:27 (2011)Google Scholar
  3. 3.
    Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating twitter users. In: CIKM, pp. 759–768 (2010)Google Scholar
  4. 4.
    Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in location sharing services. In: ICWSM, pp. 81–88 (2011)Google Scholar
  5. 5.
    Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: KDD, pp. 1082–1090 (2011)Google Scholar
  6. 6.
    Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Who is tweeting on twitter: human, bot, or cyborg? In: ACSAC, pp. 21–30 (2010)Google Scholar
  7. 7.
    Golder, S.A., Macy, M.W.: Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333(6051), 1878–1881 (2011)CrossRefGoogle Scholar
  8. 8.
    González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 435, 779–782 (2008)CrossRefGoogle Scholar
  9. 9.
    Grier, C., Thomas, K., Paxson, V., Zhang, M.: @spam: the underground on 140 characters or less. In: CCS, pp. 27–37 (2010)Google Scholar
  10. 10.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explorations 11(1), 10–18 (2009)CrossRefGoogle Scholar
  11. 11.
    Hecht, B., Hong, L., Suh, B., Chi, E.H.: Tweets from justin bieber’s heart: the dynamics of the location field in user profiles. In: CHI, pp. 237–246 (2011)Google Scholar
  12. 12.
    Kinsella, S., Murdock, V., O’Hare, N.: “i’m eating a sandwich in glasgow”: modeling locations with tweets. In: SMUC, pp. 61–68 (2011)Google Scholar
  13. 13.
    Laboreiro, G., Sarmento, L., Oliveira, E.: Identifying automatic posting systems in microblogs. In: Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 634–648. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Noulas, A., Scellato, S., Mascolo, C., Pontil, M.: An empirical study of geographic user activity patterns in foursquare. In: ICWSM, pp. 570–573 (2011)Google Scholar
  15. 15.
    Song, J., Lee, S., Kim, J.: Spam filtering in twitter using sender-receiver relationship. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 301–317. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Computational Linguistics 37(2), 267–307 (2011)CrossRefGoogle Scholar
  17. 17.
    Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology 61(12), 2544–2558 (2011)CrossRefGoogle Scholar
  18. 18.
    Lea, D.: Detecting spam bots in online social networking sites: A machine learning approach. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Security and Privacy XXIV. LNCS, vol. 6166, pp. 335–342. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Wang, A.H.: Don’t follow me - spam detection in twitter. In: SECRYPT, pp. 142–151 (2010)Google Scholar
  20. 20.
    Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.-L.: Human mobility, social ties, and link prediction. In: KDD, pp. 1100–1108 (2011)Google Scholar
  21. 21.
    Yang, C., Harkreader, R.C., Gu, G.: Die free or live hard? Empirical evaluation and new design for fighting evolving twitter spammers. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 318–337. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Yardi, S., Romero, D.M., Schoenebeck, G., Boyd, D.: Detecting spam in a twitter network. First Monday 15(1) (2010)Google Scholar
  23. 23.
    Zhang, C.M., Paxson, V.: Detecting and analyzing automated activity on twitter. In: Spring, N., Riley, G.F. (eds.) PAM 2011. LNCS, vol. 6579, pp. 102–111. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peifeng Yin
    • 1
  • Nilam Ram
    • 2
  • Wang-Chien Lee
    • 1
  • Conrad Tucker
    • 3
  • Shashank Khandelwal
    • 4
  • Marcel Salathé
    • 4
  1. 1.Department of Computer Science & EngineeringPennsylvania State UniversityUSA
  2. 2.Human Development and PsychologyPennsylvania State UniversityUSA
  3. 3.School of Engineering Design TechnologyPennsylvania State UniversityUSA
  4. 4.Department of BiologyPennsylvania State UniversityUSA

Personalised recommendations