Abstract
Semi-supervised clustering on information networks combines both the labeled and unlabeled data sets with an aim to improve the clustering performance. However, the existing semi-supervised clustering methods are all designed for homogeneous networks and do not deal with heterogeneous ones. In this work, we propose a semi-supervised clustering approach to analyze heterogeneous information networks, which include multi-typed objects and links and may contain more useful semantic information. The major challenge in the clustering task here is how to handle multi-relations and diverse semantic meanings in heterogeneous networks. In order to deal with this challenge, we introduce the concept of relation-path to measure the similarity between two data objects of the same type. Thereafter, we make use of the labeled information to extract different weights for all relation-paths. Finally, we propose SemiRPClus, a complete framework for semi-supervised learning in heterogeneous networks. Experimental results demonstrate the distinct advantages in effectiveness and efficiency of our framework in comparison with the baseline and some state-of-the-art approaches.
Keywords
- Heterogeneous information network
- Semi-supervised clustering
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Fortunato, S.: Community detection in graphs. Physics Reports 486(3), 75–174 (2010)
Lipka, N., Stein, B., Anderka, M.: Cluster-based one-class ensemble for classification problems in information retrieval. In: SIGIR 2012, pp. 1041–1042. ACM (2012)
Pham, M.C., Cao, Y., et al.: A clustering approach for collaborative filtering recommendation using social network analysis. J. UCS 17(4), 583–604 (2011)
Sun, Y., Han, J., Zhao, P., et al.: Rankclus: integrating clustering with ranking for heterogeneous information network analysis. In: ICDT 2009, pp. 565–576. ACM (2009)
Zhu, X.: Semi-supervised learning literature survey. Computer Science, University of Wisconsin-Madison 2, 3 (2006)
Basu, S., Banerjee, A., Mooney, R.J.: Semi-supervised clustering by seeding. In: ICML, vol. 2, pp. 27–34 (2002)
Zhou, D., Bousquet, O., Lal, T.N., et al.: Learning with local and global consistency. Advances in Neural Information Processing Systems 16(16), 321–328 (2004)
Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: ICML, p. 11. ACM (2004)
Sun, Y.E.: Integrating meta-path selection with user-guided object clustering in heterogeneous information networks. In: KDD 2012, pp. 1348–1356. ACM (2012)
Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. In: VLDB 2011 (2011)
Shi, C., Kong, X., Yu, P.S., Xie, S., Wu, B.: Relevance search in heterogeneous networks. In: ICDT 2012, pp. 180–191. ACM (2012)
Sun, Y., Barber, R., Gupta, M., et al.: Co-author relationship prediction in heterogeneous bibliographic networks. In: ASONAM 2011, pp. 121–128. IEEE (2011)
Lü, L., Zhou, T.: Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications 390(6), 1150–1170 (2011)
Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to linear regression analysis, vol. 821. Wiley (2012)
Cai, D., Shao, Z., He, X., Yan, X., Han, J.: Mining hidden community in heterogeneous social networks. In: LinkKDD, pp. 58–65. ACM (2005)
Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied logistic regression. Wiley. com (2013)
Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to natural language processing. Computational Linguistics 22(1), 39–71 (1996)
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)
Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. The Computer Journal 26(4), 354–359 (1983)
Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive classification on heterogeneous information networks. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS (LNAI), vol. 6321, pp. 570–586. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Luo, C., Pang, W., Wang, Z. (2014). Semi-supervised Clustering on Heterogeneous Information Networks. In: Tseng, V.S., Ho, T.B., Zhou, ZH., Chen, A.L.P., Kao, HY. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8444. Springer, Cham. https://doi.org/10.1007/978-3-319-06605-9_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-06605-9_45
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06604-2
Online ISBN: 978-3-319-06605-9
eBook Packages: Computer ScienceComputer Science (R0)