Skip to main content

Overview of the Ocular Biomechanical Properties Measured by the Ocular Response Analyzer and the Corvis ST

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 284))

Abstract

Two commercially used noncontact tonometers: the Ocular Response Analyzer (ORA) and the Corvis ST (CST) are presented. The devices measures biomechanical properties of the cornea that are essential for better understanding of the optical and the geometrical properties of the cornea. Characteristic parameters for both ORA and Corvis ST are described. One of the main ORA parameter is corneal hysteresis (CH) which is supposed to represent the viscoelastic properties of the cornea. The main advantage of Corvis ST is a high-speed Scheimpflug camera capable of taking two-dimensional images of a cross-section of the cornea during its deformation, which can possibly give additional information about the biomechanical status of the cornea.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dupps, W.J., Wilson, S.E.: Biomechanics and wound healing in the cornea. Exp. Eye Res. 83, 709–720 (2006)

    Article  Google Scholar 

  2. Shah, S., Laiquzzaman, M., Bhojwani, R., Mantry, S., Cunliffe, I.: Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007)

    Article  Google Scholar 

  3. Ambrosio, R., Nogueira, L.P., Caldas, D.L., Fontes, B.M., Luz, A., Cazal, J.O., Alves, M.R., Belin, M.W.: Evaluation of Corneal Shape and Biomechanics Before LASIK. Int. Ophthalmol. Clin. 51, 11–39 (2011)

    Article  Google Scholar 

  4. Ortiz, D., Pinero, D., Shabayek, M.H., Arnalich-Montiel, F., Alio, J.L.: Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J. Cataract Refract. Surg. 33, 1371–1375 (2007)

    Article  Google Scholar 

  5. Pepose, J.S., Feigenbaum, S.K., Oazi, M.A., Sanderson, J.P., Roberts, C.J.: Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Am. J. Ophthalmol. 143, 39–47 (2007)

    Article  Google Scholar 

  6. Ogbuehi, K.C., Osuagwu, U.L.: Corneal biomechanical properties: Precision and influence on tonometry. Cont. Lens Anterior Eye (2013)

    Google Scholar 

  7. Liu, J., Roberts, C.J.: Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J. Cataract Refract. Surg. 31, 146–155 (2005)

    Article  Google Scholar 

  8. Doughty, M.J., Zaman, M.L.: MAJOR REVIEW Human Corneal Thickness and Its Impact on Intraocular Pressure Measures? A Review and Meta-analysis Approach 44 (2000)

    Google Scholar 

  9. Kotecha, A., White, E.T., Shewry, J.M., Garway-Heath, D.F.: The relative effects of corneal thickness and age on Goldmann applanation tonometry and dynamic contour tonometry. Br. J. Ophthalmol. 89, 1572–1575 (2005)

    Article  Google Scholar 

  10. Kotecha, A.: What biomechanical properties of the cornea are relevant for the clinician? Surv. Ophthalmol. 52(suppl. 2), S109–S114 (2007)

    Google Scholar 

  11. Luce, D.A.: Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract Refract. Surg. 31, 156–162 (2005)

    Article  Google Scholar 

  12. Franco, S., Lira, M.: Biomechanical properties of the cornea measured by the Ocular Response Analyzer and their association with intraocular pressure and the central corneal curvature. Clin. Exp. Optom. 92, 469–475 (2009)

    Article  Google Scholar 

  13. Hjortdal, J.O.: Regional elastic performance of the human cornea. J. Biomech. 29, 931–942 (1996)

    Article  Google Scholar 

  14. Touboul, D., Roberts, C., Kerautret, J., Garra, C., Maurice-Tison, S., Saubusse, E., Colin, J.: Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J. Cataract Refract. Surg. 34, 616–622 (2008)

    Article  Google Scholar 

  15. Nessim, M., Mollan, S.P., Wolffsohn, J.S., Laiquzzaman, M., Sivakumar, S., Hartley, S., Shah, S.: The relationship between measurement method and corneal structure on apparent intraocular pressure in glaucoma and ocular hypertension. Cont. Lens Anterior Eye 36, 57–61 (2013)

    Article  Google Scholar 

  16. Medeiros, F.A., Weinreb, R.N.: Evaluation of the influence of corneal biomechanical properties on intraocular pressure measurements using the ocular response analyzer. J. Glaucoma 15, 364–370 (2006)

    Article  Google Scholar 

  17. Kotecha, A., Elsheikh, A., Roberts, C.R., Zhu, H., Garway-Heath, D.F.: Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer. Invest. Ophthalmol. Vis. Sci. 47, 5337–5347 (2006)

    Article  Google Scholar 

  18. Kamiya, K., Hagishima, M., Fujimura, F., Shimizu, K.: Factors affecting corneal hysteresis in normal eyes. Graefes Arch. Clin. Exp. Ophthalmol. 246, 1491–1494 (2008)

    Article  Google Scholar 

  19. Greenstein, S.A., Fry, K.L., Hersh, P.S.: In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia: 1-year analysis of a randomized, controlled, clinical trial. Cornea 31, 21–25 (2012)

    Article  Google Scholar 

  20. Vinciguerra, P., Albe, E., Mahmoud, A.M., Trazza, S., Hafezi, F., Roberts, C.J.: Intra- and postoperative variation in ocular response analyzer parameters in keratoconic eyes after corneal cross-linking. J. Refract. Surg. 26, 669–676 (2010)

    Article  Google Scholar 

  21. Lam, A.K.C., Chen, D., Tse, J.: The Usefulness of Waveform Score from the Ocular Response Analyzer. Optom. Vis. Sci. 87, 195–199 (2010)

    Article  Google Scholar 

  22. Hong, J., Xu, J., Wei, A., Deng, S.X., Cui, X., Yu, X., Sun, X.: A new tonometer-the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest. Ophthalmol. Vis. Sci. 54, 659–665 (2013)

    Article  Google Scholar 

  23. Ambrosio Jr, R., Ramos, I., Luz, A., Faria, F.C., Steinmueller, A., Krug, M., Belin, M.W., Roberts, C.J.: Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev. Bras. Oftalmol. 72, 99–102 (2013)

    Article  Google Scholar 

  24. Nemeth, G., Hassan, Z., Csutak, A., Szalai, E., Berta, A., Modis, L.: Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J. Refract. Surg. 29, 558–563 (2013)

    Article  Google Scholar 

  25. Valbon, B.F., Ambrosio Jr, R., Fontes, B.M., Alves, M.R.: Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq. Bras. Oftalmol. 76, 229–232 (2013)

    Article  Google Scholar 

  26. Alonso-Caneiro, D., Karnowski, K., Kaluzny, B.J., Kowalczyk, A., Wojtkowski, M.: Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system. Opt. Express. 19, 14188–14199 (2011)

    Article  Google Scholar 

  27. Danielewska, M.E., Iskander, D.R., Kowalska, M., Kasprzak, H.T.: Phase dependencies between longitudinal corneal apex displacement and cardiovascular signals: is the ocular pulse influenced by the electrical activity of the heart? Clin. Exp. Optom. 95, 631–637 (2012)

    Article  Google Scholar 

  28. Kempf, R., Kurita, Y., Iida, Y., Kaneko, M., Mishima, H.K., Tsukamoto, H., Sugimoto, E.: Understanding eye deformation in non-contact tonometry. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 1, pp. 5428–5431 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Jedzierowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jedzierowska, M., Koprowski, R., Wróbel, Z. (2014). Overview of the Ocular Biomechanical Properties Measured by the Ocular Response Analyzer and the Corvis ST. In: Piętka, E., Kawa, J., Wieclawek, W. (eds) Information Technologies in Biomedicine, Volume 4. Advances in Intelligent Systems and Computing, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-319-06596-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06596-0_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06595-3

  • Online ISBN: 978-3-319-06596-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics