Breast Phantom Imaging Results from an Ultrasound Computer Tomography Research System

  • Krzysztof J. Opieliński
  • Piotr Pruchnicki
  • Tadeusz Gudra
  • Przemysław Podgórski
  • Tomasz Kraśnicki
  • Jacek Kurcz
  • Marek Sąsiadek
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 283)

Abstract

Today, in the age of computerization, experts not only strive to perfect methods of ultrasonographic (US) imaging of tissue structure, but also intensively develop transmission methods, focusing especially on ultrasound transmission tomography (UTT) (analogous to X-ray computed tomography - CT) and ultrasound reflection tomography (URT) based on synthetic aperture method used in radar imaging. The following paper presents and analyses the results of ultrasound transmission tomography of the internal structure of a biopsy CIRS Model 052A breast phantom. The imaging was performed with an internally designed ultrasound computer tomography research system. The obtained results were compared to the imaging results from dual energy CT, MR mammography and traditional US.

Keywords

ultrasound computer tomography (UCT) ultrasonography (US) ultrasound transmission tomography (UTT) computed tomography (CT) magnetic resonance (MR) mammography breast biopsy phantom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basset, L.W., Jackson, V.P., Fu, K.L., Fu, Y.S.: Diagnosis of Diseases of the Breast. Elsevier Saunders, Philadelphia (2005)Google Scholar
  2. 2.
    Opielinski, K.J.: Application of transmission waves for characterization and imaging of biological media structures. Printing House of Wroclaw University of Technology, Wroclaw (2011) (in Polish)Google Scholar
  3. 3.
    Opielinski, K.J.: Ultrasonic Tomographic Imaging of Soft Tissue. In: Leniowska, L., Branski, A. (eds.) Progress of Acoustics, pp. 23–52. Polish Acoustical Society, Rzeszow Department, Rzeszow (2013) (in Polish)Google Scholar
  4. 4.
    Duric, N., Littrup, P., Poulo, L., Babkin, A., Pevzner, R., Holsapple, E., Rama, O., Glide, C.: Detection of breast cancer with ultrasound tomography: First results with the Computed Ultrasound Risk Evaluation (CURE) prototype. Med. Phys. 34(2), 773–785 (2007)CrossRefGoogle Scholar
  5. 5.
    Ruiter, N.V., Schwarzenberg, G.F., Zapf, M., Gemmeke, H.: Conclusions from an Experimental 3D Ultrasound Computer Tomograph. In: IEEE Nuclear Science Symposium Conference Record, pp. 4502–4509. IEEE Press, New York (2008)Google Scholar
  6. 6.
    Wiskin, J., Borup, D., Johnson, S., Andre, M., Greenleaf, J., Parisky, Y., Klock, J.: Three-dimensional nonlinear inverse scattering: Quantitative transmission algorithms, refraction corrected reflection, scanner design and clinical results. POMA 19, 075001 (2013)Google Scholar
  7. 7.
    Opielinski, K.J., Pruchnicki, P., Gudra, T., Podgorski, P., Krasnicki, T., Kurcz, J., Sasiadek, M.: Ultrasound Transmission Tomography Imaging of Structure of Breast Elastography Phantom Compared to US, CT and MRI. Arch. Acoust. 38(3), 321–334 (2013)Google Scholar
  8. 8.
    Gudra, T., Opielinski, K.J.: The ultrasonic probe for the investigating of internal object structure by ultrasound transmission tomography. Ultrasonics 44, e679–e683 (2006)Google Scholar
  9. 9.
    Opielinski, K.J., Gudra, T.: Multi-parameter ultrasound transmission tomography of biological media. Ultrasonics 44(1-4), e295–e302 (2006)Google Scholar
  10. 10.
    Opielinski, K.J., Gudra, T.: Ultrasonic Transmission Tomography. In: Sikora, J., Wojtowicz, S. (eds.) Industrial and Biological Tomography, pp. 263–338. Book Publishing of Institute of Electrotechnics, Warsaw (2010)Google Scholar
  11. 11.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)MATHGoogle Scholar
  12. 12.
    Pruszynski, B.: Radiology, RTG, CT, USG, MRI Image Diagnostics and Radioisotopes. PZWL, Warsaw (2000) (in Polish)Google Scholar
  13. 13.
    Crawford, C.R., Kak, A.C.: Multipath artifact corrections in ultrasonic transmission tomography. Ultrasonic Imaging 4, 234–266 (1982)CrossRefGoogle Scholar
  14. 14.
    Filipczynski, L.: Detect ability of calcifications in breast tissues by means of ultrasonic echo method. Arch. Acoust. 18(3), 223–240 (1983) (in Polish)Google Scholar
  15. 15.
    Wronkowski, Z., Zwierno, M.: Brest cancer – practical information – interview, diagnostics, classification of changes. Health Service 24-26, 2917–2919 (2000) (in Polish)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Krzysztof J. Opieliński
    • 1
  • Piotr Pruchnicki
    • 1
  • Tadeusz Gudra
    • 1
  • Przemysław Podgórski
    • 2
  • Tomasz Kraśnicki
    • 2
  • Jacek Kurcz
    • 2
  • Marek Sąsiadek
    • 2
  1. 1.Faculty of ElectronicsWrocław University of TechnologyWrocławPoland
  2. 2.Department of RadiologyWrocław Medical UniversityWrocławPoland

Personalised recommendations