Skip to main content

microRNA 3’-end Modification Detection Algorithm and Its Usage Example for Tissue Classification

  • Conference paper

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 283)

Abstract

Recent studies indicates that cellular cancerogenesis is connected with microRNA (miRNA) expression levels. In particular, different miRNAs can serve as classification features for distinguishing different cancer types. This paper provides classification attempt using miRNA isoforms with 3’-end modification as classification features. microRNA samples was obtained using next generation sequencing method. Data was preprocessed using authors algorithm developed in R. Support Vector Mashines and Partial Least Square methods were used to classify two types of miRNA samples: Follicular Adenoma and Follicular Thyroid Cancer. It was observed that only several miRNA modified isoforms were identified as the most differentiating for analyzed samples. Obtained results indicate that miRNA 3’-end modifications can be used as cancer tissue classification features.

Keywords

  • microRNA
  • 3’-end modification
  • detection algorithm
  • classification
  • partial least square

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-06593-9_25
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-06593-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burroughs, A.M., et al.: A comprehensive survey of 3’ animal mirna modification events and a possible role for 3’ adenylation in modulating mirna targeting effectiveness. Genome Research 2, 1398–1410 (2010)

    CrossRef  Google Scholar 

  2. Dudoit, S., Fridlyand, J.: Classification in microarray experiments. Bioconductor Manual (September 2002)

    Google Scholar 

  3. Efron, B.: Estimating the error rate of a prediction rule: improvement on cross-validation. J. Amer. Stat. Assoc. 78(382), 316–331 (1983)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Fujarewicz, K.: A multi-gene approach to differentiate papillary thyroid carcinoma from benign lesions: gene selection using support vector machines with bootstrapping. Endocrine-related Cancer 14(3), 809–826 (2007)

    CrossRef  Google Scholar 

  5. Fujarewicz, K.: A note on classification of gene expression data using support vector machines. Journal of Biological Systems 11(01), 43–56 (2003)

    CrossRef  MATH  Google Scholar 

  6. Fujarewicz, K.: Improved classification of gene expression data using support vector machines. J. Med. Inf. Technol. 6 (2001)

    Google Scholar 

  7. Gentleman, R.C., et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol., R80 (2004)

    Google Scholar 

  8. Hoskuldsson, A.: PLS regression methods. J. Chemom. 2(3), 211–228 (1988)

    CrossRef  Google Scholar 

  9. Illumina company website, http://www.illumina.com

  10. Jarzab, B.: Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Research 65(4), 1587–1597 (2005)

    CrossRef  Google Scholar 

  11. Keutgen, X.M., et al.: A panel of four micrornas accurately differentiates malignant from benign indeterminante thyroid lesions of fine needle aspiration. Clinical Cancer Research (2012) (published online February 20, 2012)

    Google Scholar 

  12. Krol, J., et al.: The widespread regulation of microrna biogenesis, function and decay. Nature Reviews 11 (2010)

    Google Scholar 

  13. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012)

    CrossRef  Google Scholar 

  14. Lee, L.W., et al.: Complexity of the microrna repertoire revealed by nextgeneration sequencing. RNA 16, 2170–2180 (2010)

    CrossRef  Google Scholar 

  15. Li, S.C., et al.: Microrna 3’-end nucleotide modification patterns and arm selection preference in liver tissues. In: 23rd International Conference on Genome Informatics GIW 2012 (2012)

    Google Scholar 

  16. Marini, F., et al.: Microrna role in thyroid cancer development. Journal of Thyroid Research, 2011 ID: 407123 (2011)

    Google Scholar 

  17. Martin, M.: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal 17, 10–12 (2011)

    CrossRef  Google Scholar 

  18. Mevik, B.H., Wehrens, R.: The pls package: Principal component and partial least squares regression. Journal of Statistical Software 18 (2007)

    Google Scholar 

  19. Mirbase database website, http://www.mirbase.org

  20. Newman, M.A., et al.: Deep sequencing of microrna precursors reveals extensive 3’-end modification. RNA 17 (2011)

    Google Scholar 

  21. Nguyen, D.V., Rocke, D.M.: Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18(1), 39–50 (2002)

    CrossRef  Google Scholar 

  22. Rossing, M., et al.: Classification of follicular cell-derived thyroid cancer by global rna profiling. Journal of Molecular Endocrinology (2013)

    Google Scholar 

  23. Simek, K., et al.: Using SVD and SVM methods for selection, classification, clustering and modeling of DNA microarray data. Engineering Applications of Artificial Intelligence 17(4), 417–427 (2004)

    CrossRef  Google Scholar 

  24. Student, S., Fujarewicz, K.: Stable feature selection and classification algorithms for multiclass microarray data. Biology Direct 7(1), 33 (2012)

    CrossRef  Google Scholar 

  25. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    CrossRef  MATH  Google Scholar 

  26. Weber, F., et al.: A limited set of human microrna is deregulated in follicular thyroid carcinoma. The Journal of Clinical Endocrinology and Metabolism 91(9), 3584–3591 (2006)

    CrossRef  Google Scholar 

  27. Weber, F., et al.: Genetic classification of benign and malignant thyroid follicular neoplasia based on a three-gene combination. The Journal of Clinical Endocrinology and Metabolism 90(5), 2512–2521 (2005)

    CrossRef  Google Scholar 

  28. Wyman, S.K., et al.: Post-transcriptional generation of mirna variants by multiple nucleotidyl transferases contributes to mirna transcriptome compexity. Genome Research 21, 1450–1461 (2011)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Danch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Danch, M., Borys, D., Stokowy, T., Krohn, K., Fujarewicz, K. (2014). microRNA 3’-end Modification Detection Algorithm and Its Usage Example for Tissue Classification. In: Piętka, E., Kawa, J., Wieclawek, W. (eds) Information Technologies in Biomedicine, Volume 3. Advances in Intelligent Systems and Computing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-06593-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06593-9_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06592-2

  • Online ISBN: 978-3-319-06593-9

  • eBook Packages: EngineeringEngineering (R0)