Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 492 Accesses

Abstract

The Invar effect, which was discovered by Guillaume (Proc Phys Soc Lond 32:374–404,1919) at the end of the 19th century, refers to the anomalously low coefficient of thermal expansion of certain alloys (Menshikov in Phys B: Condens Matter 161(1–3):1–8, 1989; Wohlfarth in J Magn Magn Mater 10(2–3):120–125, 1979), Fe65Ni35 being the archetype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acet M, Schneider T, Zähres H, Wassermann EF, Pepperhoff W (1994) Anti-Invar in Fe–Ni. J Appl Phys 75(10):7015–7017

    Article  ADS  Google Scholar 

  2. Brillo J, Egry I (2003) Density determination of liquid copper, nickel, and their alloys. Int J Thermophys 24(4):1155–1170

    Article  Google Scholar 

  3. Chikazumi S (1979) Invar anomalies. J Magn Magn Mater 10(2–3):113–119

    Article  ADS  Google Scholar 

  4. Crangle J, Hallam GC (1963) The magnetization of face-centred cubic and body-centred cubic iron + nickel alloys. Proc R Soc A: Math, Phys Eng Sci 272(1348):119–132

    Article  ADS  Google Scholar 

  5. Cuello G, Fernández-Perea R, Bermejo FJ, Román-Ross G, Campo J (2007) Structure of Fe–Ni and Fe–Ni–S molten alloys by neutron diffraction. J Non Cryst Solids 353(32–40):2987–2992

    Article  ADS  Google Scholar 

  6. Dianoux A-J, Lander G (eds) (2003) Neutron data booklet, 2nd edn. Old City Publishing, Philadelphia

    Google Scholar 

  7. Ehrhart P, Schönfeld B, Ettwig HH, Pepperhoff W (1980) The lattice structure of antiferromagnetic γ-iron. J Magn Magn Mater 22(1):79–85

    Article  ADS  Google Scholar 

  8. Entel P, Hoffmann E, Mohn P, Schwarz K, Moruzzi VL (1993) First-principles calculations of the instability leading to the Invar effect. Phys Rev B 47(14):8706–8720

    Article  ADS  Google Scholar 

  9. Fischer HE, Cuello GJ, Palleau P, Feltin D, Barnes AC, Badyal YS, Simonson JM (2002) D4c: a very high precision diffractometer for disordered materials. Appl Phys A 74:S160–S162

    Google Scholar 

  10. Fischer HE, Barnes AC, Salmon PS (2006) Neutron and X-ray diffraction studies of liquids and glasses. Rep Prog Phys 69(1):233–299

    Article  ADS  Google Scholar 

  11. Freeman AJ, Watson RE (1961) Hartree-Fock atomic scattering factors for the neutral atom iron transition series. Acta Crystallogr A 14(3):231–234

    Article  Google Scholar 

  12. Fukamichi K, Masumoto T, Kikuchi M (1979) Invar and Elinvar amorphous alloys. IEEE Trans Magn 15(6):1404–1409

    Article  ADS  Google Scholar 

  13. Grigoriev SV, Maleyev SV, Okorokov AI, Runov VV (1998) Observation of two length scales of magnetic correlations in the Invar Fe75 Ni25 alloy above Tc by means of small-angle neutron scattering and neutron depolarization. Phys Rev B 58(6):3206–3211

    Article  ADS  Google Scholar 

  14. Guillaume CE (1919–1920) The anomaly of the nickel-steels. Proc Phys Soc Lond 32:374–404

    Google Scholar 

  15. Hatherly M, Hirakawa K, Lowde RD, Mallett JF, Stringfellow MW, Torrie BH (1964) Spin wave energies and exchange parameters in iron-nickel alloys. Proc Phys Soc Lond 84(5371):55–62

    Article  ADS  Google Scholar 

  16. Hixson RS, Winkler MA, Hodgdon ML (1990) Sound speed and thermophysical properties of liquid iron and nickel. Phys Rev B 42(10):6485–6491

    Article  ADS  Google Scholar 

  17. Holland-Moritz D, Schenk T, Convert P, Hansen T, Herlach DM (2005) Electromagnetic levitation apparatus for diffraction investigations on the short-range order of undercooled metallic melts. Meas Sci Technol 16(2):372–380

    Article  ADS  Google Scholar 

  18. Kirschbaum U, Zähres H, Wassermann EF (1995) Invar behavior and martensitic transitions in FeNiPt alloys. J Phys IV 5(C2):111–116

    Google Scholar 

  19. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, Hoboken

    Google Scholar 

  20. Kobatake H, Khosroabadi H, Fukuyama H (2012) Normal spectral emissivity measurement of liquid iron and nickel using electromagnetic levitation in direct current magnetic Field. Metall Mater Trans A 43(7):2466–2472

    Article  Google Scholar 

  21. Lomova NV, Shabanova IN, Chirkov AG, Ponomaryov AG (2007) On short-range ordering in Fe–Ni alloys. J Electron Spectrosc Relat Phenom 156–158:401–404

    Article  Google Scholar 

  22. Matsumoto K, Maruyama H, Ishimatsu N, Kawamura N, Miztumaki M, Irifune T, Sumiya H (2011) Noncollinear spin structure in Fe–Ni Invar alloy probed by magnetic EXAFS at high pressure. J Phys Soc Jpn 80(2):023709

    Article  ADS  Google Scholar 

  23. Menshikov AZ (1989) On the Invar problem. Physica B 161(1–3):1–8

    Article  ADS  Google Scholar 

  24. Passell L, Blinowski K, Brun T, Nielsen P (1965) Critical magnetic scattering of neutrons in iron. Phys Rev 139(6A):A1866–A1876

    Article  ADS  Google Scholar 

  25. Pillai SO (2005) Solid state physics, 6th edn. New Age International, New Delhi

    Google Scholar 

  26. Rancourt DG (2002) Invar behavior in Fe–Ni alloys is predominantly a local moment effect arising from the magnetic exchange interactions between high moments. Phase Transitions 75(1–2):201–209

    Article  Google Scholar 

  27. Rancourt D, Dang MZ (1996) Relation between anomalous magnetovolume behavior and magnetic frustration in Invar alloys. Phys Rev B: Condens Matter 54(17):12225–12231

    Article  ADS  Google Scholar 

  28. Sabiryanov RF, Bose SK, Mryasov ON (1995) Effect of topological disorder on the itinerant magnetism of Fe and Co. Phys Rev B, 51(14):8958–8973

    Google Scholar 

  29. Van Hove L (1954) Time-dependent correlations between spins and ferromagnetic crystals. Phys Rev 95(6):1374–1384

    Article  MATH  ADS  Google Scholar 

  30. van Schilfgaarde M, Abrikosov IA, Johansson B (1999) Origin of the Invar effect in iron±nickel alloys. Nature 400(6793):46–49

    Article  ADS  Google Scholar 

  31. Waseda Y, Suzuki K (1970) Atomic distribution and magnetic moment in liquid iron by neutron diffraction. Physica Status Solidi 39(1):p669

    Article  ADS  Google Scholar 

  32. Waseda Y, Suzuki K, Tamaki S, Taeuchi S (1970) Neutron diffraction study of nickel in liquid state. Physica Status Solidi 39(1):p181

    Article  ADS  Google Scholar 

  33. Weber M, Knoll W, Steeb S (1978) Magnetic small-angle scattering from molten elements iron, colbalt and nickel. J Appl Crystallogr 11:638–641

    Article  Google Scholar 

  34. Weiss RJ (1963) The origin of the ‘Invar’ effect. Proc Phys Soc Lond 82(526):281–288

    Article  ADS  Google Scholar 

  35. Wille G, Millot F, Rifflet JC (2002) Thermophysical properties of containerless liquid iron up to 2,500 K. Int J Thermophys 23(5):1197–1206

    Article  Google Scholar 

  36. Wohlfarth EP (1979) Invar behaviour in crystalline and amorphous alloys. J Magn Magn Mater 10(2–3):120–125

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Farmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farmer, T. (2015). Liquid Invar. In: Structural Studies of Liquids and Glasses Using Aerodynamic Levitation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06575-5_6

Download citation

Publish with us

Policies and ethics