Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 485 Accesses

Abstract

This technique involves the use of a stream of gas directed through a conical nozzle in order to support a small sample (~1.5–5 mm diameter, 10–100 mg). Typically, high purity (99.9995 %) argon is used as a levitation gas in order to reduce the possibility of contamination; however other levitation gases can also be used, for instance an argon/oxygen mix if the oxygen content of the sample is likely to reduce with Ar as the sole levitation gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Oxford University Press, Oxford

    Google Scholar 

  2. Als-Nielsen J, McMorrow D (2011) Elements of modern X-ray physics. Wiley, Singapore

    Book  Google Scholar 

  3. Balcar E, Lovesey SW (1989) Theory of magnetic neutron and photon scattering. Oxford University Press, Oxford

    Google Scholar 

  4. Balcar E, Lovesey SW (1991) Theory of neutron scattering by atomic electrons: jj-coupling scheme. J Phys Condens Matter 3(37):7095–7115

    Article  ADS  Google Scholar 

  5. Bertagnolli H, Chieux P, Zeidler MD (1976) A neutron-diffraction study of liquid acetonitrile. Mol Phys 32(3):759–773

    Article  ADS  Google Scholar 

  6. Bhatia AB, Thornton DE (1970) Structural aspects of the electrical resistivity of binary alloys. Phys Rev B 2(8):3004–3012

    Article  ADS  Google Scholar 

  7. Blech IA, Averbach BL (1965) Multiple scattering of neutrons in vanadium and copper. Phys Rev 137(4A):1113–1116

    Article  ADS  Google Scholar 

  8. Bloch F (1936) On the magnetic scattering of neutrons. Phys Rev 50(3):259–260

    Article  ADS  Google Scholar 

  9. Breit G, Wigner E (1936) Capture of slow neutrons. Phys Rev 49(7):519–532

    Article  MATH  ADS  Google Scholar 

  10. Buckingham RA (1938) The classical equation of state of gaseous helium, neon and argon. Proc R Soc Lond A 168(933):264–283

    Article  ADS  Google Scholar 

  11. Bush TS, Gale JD, Catlow RA, Battle PD (1994) Self-consistent interatomic potentials for the simulation of binary and ternary oxides. J Mater Chem 4(6):831–837

    Article  Google Scholar 

  12. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474

    Article  ADS  Google Scholar 

  13. Clark EB, Mead RN, Mountjoy G (2006) A molecular dynamics model of the atomic structure of Tb metaphosphate glass (Tb2O3)0.25 (P2O5)0.75. J Phys: Condens Matter 18(29):6815–6826

    ADS  Google Scholar 

  14. Containerless Research Inc. (1999) Conical nozzle levitation system preliminary operator’s manual

    Google Scholar 

  15. Cossy C, Barnes AC, Enderby JE (1989) The hydration of Dy3+ and Yb3+ in aqueous solution: a neutron scattering first order difference study. J Chem Phys 90(6):3254–3260

    Article  ADS  Google Scholar 

  16. Coté B, Massiot D, Taulelle F, Coutures J-P (1992) 27Al NMR spectroscopy of aluminosilicate melts and glasses. Chem Geol 96(3–4):367–370

    Article  Google Scholar 

  17. Dianoux A-J, Lander G (eds) (2003) Neutron data booklet, 2nd edn. Old City Publishing, Philadelphia

    Google Scholar 

  18. Enderby JE, North DM, Egelstaff PA (1966) The partial structure factors of liquid Cu-Sn. Phil Mag 14(131):961–970

    Article  ADS  Google Scholar 

  19. Faber TE, Ziman JM (1965) A theory of the electrical properties of liquid metals. Phil Mag 11(109):153–173

    Article  ADS  Google Scholar 

  20. Filipponi A (1994) The radial distribution function probed by X-ray absorption spectroscopy. J Phys: Condens Matter 6(41):8415–8427

    ADS  Google Scholar 

  21. Filipponi A (2001) EXAFS for liquids. J Phys: Condens Matter 13(7):R23–R60

    ADS  Google Scholar 

  22. Filipponi A, Cicco AD, Madonna V (1995) X-ray-absorption spectroscopy and n-body distribution functions in condensed matter 1 Theory. Phys Rev B 52(21):15122–15134

    Article  ADS  Google Scholar 

  23. Fischer HE, Barnes AC, Salmon PS (2006) Neutron and x-ray diffraction studies of liquids and glasses. Rep Prog Phys 69(1):233–299

    Article  ADS  Google Scholar 

  24. Fratello VJ, Brandle CD (1993) Physical properties of a Y3A15O12 melt. J Cryst Growth 128(1–4):1006–1010

    Article  ADS  Google Scholar 

  25. Freeman AJ, Desclaux JP (1979) Dirac-Fock studies of some electronic properties of rare-earth ions. J Magn Magn Mater 12(1):11–21

    Article  ADS  Google Scholar 

  26. Freeman AJ, Watson RE (1961) Hartree-Fock atomic scattering factors for the neutral atom iron transition series. Acta Crystallogr A 14(3):231–234

    Article  Google Scholar 

  27. Hennet L, Thiaudière D, Landron C, Melin P, Price DL, Coutures J-P (2003) Melting behavior of levitated Y2O3. Appl Phys Lett 83(16):3305–3307

    Article  ADS  Google Scholar 

  28. Kidkhunthod P, Barnes AC (2009) A structural study of praseodymium gallate glasses by combined neutron diffraction, molecular dynamics and EXAFS techniques. J Phys: Conf Ser 190:012076

    ADS  Google Scholar 

  29. King SM, Griffiths PC, Cosgrove T (2000) Using SANS to study adsorbed layers in colloidal dispersions (Chap. 4). In: Gabrys BJ (ed) Applications of neutron scattering to soft condensed matter. Gordon and Breach Science Publishers, Singapore

    Google Scholar 

  30. Krishnan S, Hennet L, Jahn S, Key TA, Madden PA, Saboungi M-L, Price DL (2005) Structure of normal and supercooled liquid aluminum oxide. Chem Mater 17(10):2662–2666

    Article  Google Scholar 

  31. Krogh-Moe J (1966) A method for the resolution of composite radial pair distribution function. Acta Chem Scand 20(10):2890–2891

    Article  Google Scholar 

  32. Landron C, Hennet L, Jenkins T, Greaves G, Coutures J-P, Soper A (2001) Liquid alumina: detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement. Phys Rev Lett 86(21):4839–4842

    Article  ADS  Google Scholar 

  33. McGreevy RL, Pusztai L (1988) Reverse monte carlo simulation: a new technique for the determination of disordered structures. Mol Simul 1(6):359–367

    Article  Google Scholar 

  34. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  ADS  Google Scholar 

  35. Nordine PC (1986) The accuracy of multi-color optical pyrometry. High Temp Sci 21(2):97–109

    Google Scholar 

  36. Paalman HH, Pings CJ (1962) Numerical evaluation of X-ray absorption Factors for cylindrical samples and annular samples cells. J Appl Phys 33(8):2635–2639

    Article  MATH  ADS  Google Scholar 

  37. Placzek G (1952) The scattering of neutrons by systems of heavy nuclei. Phys Rev 86(3):377–388

    Article  MATH  ADS  Google Scholar 

  38. Rehr JJ, Albers RC (2000) Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys 72(3):621–654

    Article  ADS  Google Scholar 

  39. Salmon PS (1992) The structure of molten and glassy 2:1 binary systems: an approach using the Bhatia-Thornton formalism. Proc R Soc Lond A 437(1901):591–606

    Article  ADS  Google Scholar 

  40. Sivia DS (2011) Elementary scattering theory. Oxford University Press, Oxford

    Book  Google Scholar 

  41. Skinner LB (2008) Structure and phase behaviour of Aluminate glasses, produced using levitation and laser heating. University of Bristol, Ph. D

    Google Scholar 

  42. Skinner L, Barnes AC (2006) An oscillating coil system for contactless electrical conductivity measurements of aerodynamically levitated melts. Rev Sci Instrum 77(12):123904

    Article  ADS  Google Scholar 

  43. Skinner LB, Barnes AC, Salmon PS, Crichton WA (2008) Phase separation, crystallization and polyamorphism in the Y2O3-Al2O3 system. J Phys: Condens Matter 20:205103

    ADS  Google Scholar 

  44. Smith W, Forester T (1996) DL POLY 2.0: A general-purpose parallel molecular dynamics simulation package. J Mol Graph 14(3):136–141

    Article  Google Scholar 

  45. Soper AK (1996) Empirical potential Monte Carlo simulation of fluid structure. Chem Phys 202(2–3):295–306

    Article  ADS  Google Scholar 

  46. Soper AK (2001) Tests of the empirical potential refinement method and a new method of application to neutron diffraction data on water. Mol Phys 99(17):1503–1516

    Article  ADS  Google Scholar 

  47. Soper AK, Howells WS, Hannon AC (1989) ATLAS—analysis of time-of-flight diffraction data from liquid and amorphous samples. Rutherfod Appleton Laboratory report RAL-89-046

    Google Scholar 

  48. Squires GL (1978) Introduction to the theory of thermal neutron scattering. Cambridge University Press, Cambridge

    Google Scholar 

  49. Takagi R, Hutchinson F, Madden PA, Adya AK, Gaune-Escard M (1999) The structure of molten DyCl3 and DyNa3Cl6 simulated with polarizable- and rigid-ion models. J Phys: Condens Matter 11(3):645–658

    ADS  Google Scholar 

  50. Waase JC, Salmon PS (1999) Structure of molten lanthanum and cerium tri-halides by the method of isomorphic substitution in neutron diffraction. J Phys: Condens Matter 11(6):1381–1396

    Google Scholar 

  51. Westlake JR (1968) A handbook of numerical matrix inversion and solution of linear equations. Wiley, New York

    MATH  Google Scholar 

  52. Wille G, Millot F, Rifflet JC (2002) Thermophysical properties of containerless liquid iron up to 2,500 K. Int J Thermophys 23(5):1197–1206

    Article  Google Scholar 

  53. Wright AC, Etherington G, Erwin Desa JA, Sinclair RN (1982) Neutron diffraction studies of rare earth ions in glasses. J de Phys 43(9):31–34

    Google Scholar 

  54. Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple-scattering calculations of x-ray absorption spectra. Phys Rev B 52(4):2995–3009

    Article  ADS  Google Scholar 

  55. Zeidler A (2012) X-ray and neutron attenuation correction factors for spherical samples. J Appl Crystallogr 45(1):122–123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Farmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farmer, T. (2015). Experimental Techniques. In: Structural Studies of Liquids and Glasses Using Aerodynamic Levitation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06575-5_3

Download citation

Publish with us

Policies and ethics