Molecular Tools for Identification and Characterization of Plant Growth Promoting Rhizobacteria with Emphasis in Azospirillum spp.

  • Chiu-Chung Young
  • Shih-Yao Lin
  • Fo-Ting Shen
  • Wei-An Lai

Abstract

Azospirillum is considered an important genus among plant growth promoting rhizobacteria (PGPR). After the recent reclassification of Azospirillum irakense to Niveispirillum irakense and Azospirillum amazonense to Nitrospirillum amazonense based on their polyphasic taxonomic characteristics, at present this genus encompasses 15 valid species. In this chapter, the identification and characterization of the genus Azospirillum through genotypic, phenotypic or chemotaxonomic approaches were reviewed. Under the given set of PCR condition, the genus specific primers Azo494-F/Azo756-R were sufficient to differentiate Azospirillum and other closely related genera such as Rhodocista and Skermanella. Along with PCR—denaturing gradient gel electrophoresis (PCR-DGGE) or real-time quantitative PCR (qPCR), the specific primers were useful to detect and identify Azospirillum in a short time no matter pure cultures or environmental samples were used. The minimum detection limit in real-time quantitative PCR analysis is 102 CFU g−1 in the seeded soil sample. Cells of the genus Azospirillum are Gram-stained negative, spiral or rod-shaped and non-spore-forming diazotrophic. Poly-β-hydroxybutyrate granules were observed after few days of incubation. The major fatty acids were C16:0, C16:0 3-OH, C18:1 2-OH, C14:0 3-OH/C16:1 iso I, C16:1ω7c/C16:1ω6c and C18:1ω7c/C18:1ω6c; the predominant polar lipids included phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidyldimethylethanolamine (PDE) and unidentified aminolipid (AL) and phospholipids (PL); the common major respiratory quinone was ubiquinone Q-10 and predominant polyamines were sym-homospermidine and putrescine. These features are also useful to provide bases in the description of members belonging to the genus Azospirillum.

References

  1. Aziz A, Martin-Tanguy J, Larher F (1997) Plasticity of polyamine metabolism associated with high osmotic stress in rape leaf discs and with ethylene treatment. Plant Growth Regul 21:153–163CrossRefGoogle Scholar
  2. Bashan Y, Holguin G, de-Bashan L (2004) Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577CrossRefPubMedGoogle Scholar
  3. Ben Dekhil S, Cahill M, Stackebrandt E, Sly LI (1997) Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst Appl Microbiol 20:72–77CrossRefGoogle Scholar
  4. Döbereiner J, Day JM (1976) Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton WE, Nyman CJ (eds) Proceedings of the first international symposium on N2 fixation, Washington State University Press, Pullman, pp 518–538Google Scholar
  5. Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C(4)-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26PubMedGoogle Scholar
  6. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853CrossRefPubMedCentralPubMedGoogle Scholar
  7. Falk EC, Döbereiner J, Johnson JL, Krieg NR (1985) Deoxyribonucleic acid homology of Azospirillum amazonense Magalhães et al. 1984 and emendation of the description of the genus Azospirillum. Int J Syst Bacteriol 35:117–118CrossRefGoogle Scholar
  8. Falk EC, Johnson JL, Baldani VLD, Döbereiner J, Krieg NR (1986) Deoxyribonucleic and ribonucleic acid homology studies of the genera Azospirillum and Conglomeromonas. Int J Syst Bacteriol 36:80–85CrossRefGoogle Scholar
  9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  11. Fitch W (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  12. Hartmann A, Baldani J (2003) The genus Azospirillum. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Wiley, New York, pp 114–140Google Scholar
  13. Heiner C, Hunkapiller L, Chen S, Glass J, Chen E (1998) Sequencing multimegabase-template DNA using BigDye terminator chemistry. Genome Res 8:557–561PubMedCentralPubMedGoogle Scholar
  14. Khammas K, Ageron E, Grimont P, Kaiser P (1989) Azospirillum irakense sp. nov., a new nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140:679–693PubMedGoogle Scholar
  15. Kirchhof G, Reis V, Baldan J, Eckert B, Döbereiner J, Hartmann A (1997) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194:45–55CrossRefGoogle Scholar
  16. Ladha J, So R, Watanabe I (1987) Composition of Azospirillum species associated with wetland rice plants grown in different soils. Plant Soil 102:127–129CrossRefGoogle Scholar
  17. Lavrinenko K, Chernousova E, Gridneva E, Dubinina G, Akimov V, Kuever J, Lysenko A, Grabovich M (2010) Azospirillum thiophilum sp. nov., a novel diazotrophic bacterium isolated from a sulfide spring. Int J Syst Evol Microbiol 60:2832–2837CrossRefPubMedGoogle Scholar
  18. Lin S-Y, Young C-C, Hupfer H, Siering C, Arun AB, Chen W-M, Lai W-A, Shen F-T, Rekha PD, Yassin AF (2009) Azospirillum picis sp. nov., isolated from discarded tar. Int J Syst Evol Microbiol 59:761–765CrossRefPubMedGoogle Scholar
  19. Lin S-Y, Shen F-T, Young C-C (2011) Rapid detection and identification of the free-living nitrogen fixing genus Azospirillum by 16S rRNA-gene-targeted genus-specific primers. Antonie Van Leeuwenhoek 99:837–844CrossRefPubMedGoogle Scholar
  20. Lin S-Y, Shen F-T, Young L-S, Zhu Z-L, Chen W-M, Young C-C (2012) Azospirillum formosense sp. nov., a novel diazotrophic bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 62:1185–1190CrossRefPubMedGoogle Scholar
  21. Lin S-Y, Liu Y-C, Hameed A, Hsu Y-H, Lai W-A, Shen F-T, Young C-C (2013) Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 63:3762–3768CrossRefPubMedGoogle Scholar
  22. Lin S-Y, Hameed A, Shen F-T, Liu Y-C, Hsu Y-H, Shahina M, Lai W-A, Young C-C (2014) Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie Van Leeuwenhoek 105:1149–1162CrossRefPubMedGoogle Scholar
  23. Magalhães F, Baldani J, Souto S, Kuykendall J, Döbereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Bras Cien 55:417–430Google Scholar
  24. Mehnaz S, Weselowski B, Lazarovits G (2007a) Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57:620–624CrossRefPubMedGoogle Scholar
  25. Mehnaz S, Weselowski B, Lazarovits G (2007b) Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int J Syst Evol Microbiol 57:2805–2809CrossRefPubMedGoogle Scholar
  26. Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  27. Miller L (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16:584–586PubMedCentralPubMedGoogle Scholar
  28. Minnikin D, O’Donnell A, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  29. Murray R, Doetsch R, Robinow C (1994) Methods for general and molecular bacteriology. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Determination and cytological light microscopy. American Society for Microbiology, Washington, DC, pp 31–32Google Scholar
  30. Okon Y, Itzigsohn R (1992) Poly-β-hydroxybutyrate metabolism in Azospirillum brasilense and the ecological role of PHB in the rhizosphere. FEMS Microbiol Lett 103:131–139Google Scholar
  31. Okon Y, Vanderleyden J (1997) Root-associated Azospirillum species can stimulate plants. ASM News 63:366–370Google Scholar
  32. Ostle A, Holt J (1982) Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44:238–241PubMedCentralPubMedGoogle Scholar
  33. Paisley R (1996) MIS whole cell fatty acid analysis by gas chromatography training manual. MIDI, NewarkGoogle Scholar
  34. Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56:1263–1271CrossRefPubMedGoogle Scholar
  35. Poly F, Monrozier L, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103CrossRefPubMedGoogle Scholar
  36. Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37:43–51CrossRefGoogle Scholar
  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  38. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  39. Saxena B, Modi M, Modi V (1986) Isolation and characterization of siderophores from Azospirillum lipoferum D-2. J Gen Microbiol 132:2219–2224Google Scholar
  40. Scherer P, Kneifel H (1983) Distribution of polyamines in methanogenic bacteria. J Bacteriol 154:1315–1322PubMedCentralPubMedGoogle Scholar
  41. Schlegel H, Lafferty R, Krauss I (1970) The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Microbiol 71:283–294Google Scholar
  42. Seldin L, Dubnau D (1985) Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int Syst Bacteriol 35:151–154CrossRefGoogle Scholar
  43. Seshadri S, Muthukumarasamy R, Lakshinarasimhan C, Ignacimuthu S (2000) Solubilization of inorganic phosphates by Azospirillum halopraeferans. Curr Sci 79:565–567Google Scholar
  44. Shen F-T, Young C-C (2005) Rapid detection and identification of the metabolically diverse genus Gordonia by 16S rRNA-gene-targeted genus-specific primers. FEMS Microbiol Lett 250:221–227CrossRefPubMedGoogle Scholar
  45. Stahl D, Flesher B, Mansfield H, Montgomery L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084PubMedCentralPubMedGoogle Scholar
  46. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506CrossRefPubMedGoogle Scholar
  47. Stoffels M, Castellanos T, Hartmann A (2001) Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-cluster. Syst Appl Microbiol 24:83–97CrossRefPubMedGoogle Scholar
  48. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedCentralPubMedGoogle Scholar
  49. Tarrand J, Krieg N, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980CrossRefPubMedGoogle Scholar
  50. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedCentralPubMedGoogle Scholar
  51. Thuler D, Flosh E, Handro W, Barbosa M (2003) Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined medium. Lett Appl Microbiol 37:174–178CrossRefPubMedGoogle Scholar
  52. Tien TM, Gaskins M, Hubbell D (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024PubMedCentralPubMedGoogle Scholar
  53. Woese C, Kandler O, Wheelis M (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87:4576–4579CrossRefPubMedCentralPubMedGoogle Scholar
  54. Xie C, Yokota A (2005) Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55:1435–1438CrossRefPubMedGoogle Scholar
  55. Young C-C, Hupfer H, Siering C, Ho M-J, Arun AB, Lai W-A, Rekha PD, Shen F-T, Hung M-H, Chen W-M, Yassin AF (2008) Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 58:959–963CrossRefPubMedGoogle Scholar
  56. Zehr J, McReynolds L (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526PubMedCentralPubMedGoogle Scholar
  57. Zhou S, Han L, Wang Y, Yang G, Zhuang L, Hu P (2013) Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63:2618–2624CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Chiu-Chung Young
    • 1
    • 2
  • Shih-Yao Lin
    • 1
  • Fo-Ting Shen
    • 1
    • 2
  • Wei-An Lai
    • 1
    • 2
  1. 1.Department of Soil and Environmental SciencesCollege of Agriculture and Natural Resources, National Chung Hsing UniversityTaichungTaiwan
  2. 2.Agricultural Biotechnology Center, National Chung Hsing UniversityTaichungTaiwan

Personalised recommendations