Alleviation of Abiotic and Biotic Stresses in Plants by Azospirillum

  • Jordan Vacheron
  • Sébastien Renoud
  • Daniel Muller
  • Olubukola Oluranti Babalola
  • Claire Prigent-Combaret


In the face of global changes, plants must adapt to a wide range and often combined biotic and abiotic stresses that seriously impaired plant growth and development. Plants develop complex strategies to deal with water stress conditions, soil fertility losses, soil pollutions, pests, and disease. Emerging evidence suggest the involvement of common hormonal players in plant defense signaling pathways triggered in response to biotic and abiotic stresses. Besides plant strategies, plant growth-promoting rhizobacteria (PGPR), which colonize the root system and establish cooperative interactions with plants can improve their growth and help them to adapt to and cope with multiple stresses including drought, salinity, heavy metal pollutions, and parasites. Accordingly, PGPR supply added values to the plant defense strategies by expressing many relevant functions for modulating the plant hormonal balance, increasing nutrients supply to the plant, improving the functional and physical properties of protective barriers against plant parasites. Among PGPR, Azospirillum strains were long viewed as biofertilizers and less as biocontrol agents. It is becoming evident that Azospirillum is able to protect plants against a myriad of detrimental conditions. This review provides an update of works regarding the ability of Azospirillum strains to alleviate plant stress and brings out the relevant involved plant-beneficial functions. Developing PGPR-based bio-inoculants is a promising strategy to improve the growth and health of crops and develop sustainable agriculture.


Salicylic Acid Abiotic Stress Drought Stress Glycine Betaine Rhizoctonia Solani 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alamri SA, Mostafa YS (2009) Effect of nitrogen supply and Azospirillum brasilense Sp-248 on the response of wheat to seawater irrigation. Saudi J Biol Sci 16:101–107. doi: 10.1016/j.sjbs.2009.10.009 PubMedCentralPubMedGoogle Scholar
  2. Albareda M, Dardanelli MS, Sousa C et al (2006) Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol Lett 259:67–73. doi: 10.1111/j.1574-6968.2006.00244.x PubMedGoogle Scholar
  3. Alcázar R, Marco F, Cuevas JC et al (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876. doi: 10.1007/s10529-006-9179-3 PubMedGoogle Scholar
  4. Almario J, Prigent-Combaret C, Muller D, Moënne-Loccoz Y (2013) Effect of clay mineralogy on iron bioavailability and rhizosphere transcription of 2,4-diacetylphloroglucinol biosynthetic genes in biocontrol Pseudomonas protegens. Mol Plant Microbe Interact 26:566–574. doi: 10.1094/MPMI-11-12-0274-R PubMedGoogle Scholar
  5. Almario J, Muller D, Défago G, Moënne-Loccoz Y (2014) Rhizosphere ecology and phytoprotection in soils naturally suppressive to Thielaviopsis black root rot of tobacco. Environ Microbiol 16:1949–1960. doi: 10.1111/1462-2920.12459 PubMedGoogle Scholar
  6. Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429–442. doi: 10.1023/A:1026561029533 PubMedGoogle Scholar
  7. Amirsadeghi S, Robson CA, Vanlerberghe GC (2007) The role of the mitochondrion in plant responses to biotic stress. Physiol Plant 129:253–266. doi: 10.1111/j.1399-3054.2006.00775.x Google Scholar
  8. Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887. doi: 10.1016/j.plantsci.2007.02.005 Google Scholar
  9. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620. doi: 10.1016/S1002-0160(08)60055-7 Google Scholar
  10. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. doi: 10.1016/j.envexpbot.2005.12.006 Google Scholar
  11. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570. doi: 10.1007/s10529-010-0347-0 PubMedGoogle Scholar
  12. Babalola OO, Akindolire AM (2011) Identification of native rhizobacteria peculiar to selected food crops in Mmabatho municipality of South Africa. Biol Agric Hortic 27:294–309. doi: 10.1080/01448765.2011.647798 Google Scholar
  13. Bacilio M, Rodriguez H, Moreno M et al (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soils 40:188–193. doi: 10.1007/s00374-004-0757-z Google Scholar
  14. Bais HP, Park S-W, Weir TL et al (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32. doi: 10.1016/j.tplants.2003.11.008 PubMedGoogle Scholar
  15. Bakanchikova TI, Lobanok EV, Pavlova-Ivanova LK et al (1993) Inhibition of tumor formation process in dicotyledonous plants by Azospirillum brasilense strains. Mikrobiologiya 62(Suppl 3):515–523 (Russian Federation)Google Scholar
  16. Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243. doi: 10.1094/PHYTO-97-2-0239 PubMedGoogle Scholar
  17. Bano Q, Ilyas N, Bano A et al (2013) Effect of Azospirillum inoculation on maize (Zea mays l.) under drought stress. Pak J Bot 45:13–20Google Scholar
  18. Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–88. doi: 10.1007/s11103-008-9435-0
  19. Barton LL, Johnson GV, Miller SO (1986) The effect of Azospirillum brasilense on iron absorption and translocation by sorghum. J Plant Nutr 9:557–565. doi: 10.1080/01904168609363466 Google Scholar
  20. Bashan Y, de-Bashan LE (2002) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 68:2637–2643. doi: 10.1128/AEM. 68.6.2637-2643.2002 PubMedCentralPubMedGoogle Scholar
  21. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. doi: 10.1007/s11104-013-1956-x Google Scholar
  22. Belimov AA, Kunakova AM, Safronova VI et al (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology 73:99–106. doi: 10.1023/B:MICI.0000016377.62060.d3 Google Scholar
  23. Belimov AA, Dodd IC, Hontzeas N et al (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423. doi: 10.1111/j.1469-8137.2008.02657.x PubMedGoogle Scholar
  24. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. doi: 10.1111/j.1574-6941.2009.00654.x PubMedGoogle Scholar
  25. Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470. doi: 10.1111/j.1574-6941.2006.00082.x PubMedGoogle Scholar
  26. Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177. doi: 10.1007/s002039900127 PubMedGoogle Scholar
  27. Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744. doi: 10.1126/science.1171647 PubMedCentralPubMedGoogle Scholar
  28. Bouffaud M-L, Poirier M-A, Muller D, Moënne-Loccoz Y (2014) Root microbiome relates to plant host evolution in maize and other Poaceae. Environ Microbiol 16(9):2804–2814. doi: 10.1111/1462-2920.12442 PubMedGoogle Scholar
  29. Boyer M, Wisniewski-Dyé F (2009) Cell-cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol Ecol 70:1–19. doi: 10.1111/j.1574-6941.2009.00745.x PubMedGoogle Scholar
  30. Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431. doi: 10.1016/j.ibmb.2011.02.006 PubMedCentralPubMedGoogle Scholar
  31. Bresson J, Varoquaux F, Bontpart T et al (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569. doi: 10.1111/nph.12383 PubMedGoogle Scholar
  32. Bruto M, Prigent-Combaret C, Muller D, Moënne-Loccoz Y (2014) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci Rep. doi: 10.1038/srep06261 PubMedCentralPubMedGoogle Scholar
  33. Carrillo AE, Li CY, Bashan Y (2002) Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften 89:428–432. doi: 10.1007/s00114-002-0347-6 PubMedGoogle Scholar
  34. Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257PubMedGoogle Scholar
  35. Chen C, Bélanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23. doi: 10.1006/pmpp.1999.0243 Google Scholar
  36. Chowdhury SP, Nagarajan T, Tripathi R et al (2007) Strain-specific salt tolerance and osmoregulatory mechanisms in Azospirillum brasilense. FEMS Microbiol Lett 267:72–79. doi: 10.1111/j.1574-6968.2006.00540.x PubMedGoogle Scholar
  37. Chung H, Park M, Madhaiyan M et al (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974. doi: 10.1016/j.soilbio.2005.02.025 Google Scholar
  38. Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103. doi: 10.1007/s10725-007-9232-9 Google Scholar
  39. Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462. doi: 10.1139/B09-023 Google Scholar
  40. Cohen AC, Bottini R, Pontin M et al (2014) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153(1):79–90. doi: 10.1111/ppl.12221 PubMedGoogle Scholar
  41. Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. doi: 10.1128/AEM. 71.9.4951-4959.2005 PubMedCentralPubMedGoogle Scholar
  42. Compant S, Van Der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions: climate change and beneficial plant-microorganism interactions. FEMS Microbiol Ecol. doi: 10.1111/j.1574-6941.2010.00900.x PubMedGoogle Scholar
  43. Contesto C, Desbrosses G, Lefoulon C, Béna G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189. doi: 10.1016/j.plantsci.2008.01.020 Google Scholar
  44. Contesto C, Milesi S, Mantelin S et al (2010) The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232:1455–1470. doi: 10.1007/s00425-010-1264-0 PubMedGoogle Scholar
  45. Costa R, Van Aarle IM, Mendes R, Van Elsas JD (2009) Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within Gram-negative bacteria. Environ Microbiol 11:159–175. doi: 10.1111/j.1462-2920.2008.01750.x PubMedGoogle Scholar
  46. Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281. doi: 10.1139/b03-119 Google Scholar
  47. Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198Google Scholar
  48. de Souza JT, de Boer M, de Waard P et al (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172. doi: 10.1128/AEM. 69.12.7161-7172.2003 PubMedCentralPubMedGoogle Scholar
  49. de Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003a) Effect of 2,4-Diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species.” Phytopathology 93:966–975. doi:  10.1094/PHYTO.2003.93.8.966
  50. de Souza JT, de Boer M, de Waard P et al (2003b) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172. doi: 10.1128/AEM.69.12.7161-7172.2003
  51. De Weert S, Vermeiren H, Mulders IHM et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180. doi: 10.1094/MPMI.2002.15.11.1173 PubMedGoogle Scholar
  52. Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J Bacteriol 183:318–327PubMedCentralPubMedGoogle Scholar
  53. Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396. doi: 10.1016/j.pbi.2005.05.002 PubMedGoogle Scholar
  54. Dias-Arieria CR, Marini PM, Fontana LF et al (2012) Effect of Azospirillum brasilense, Stimulate® and potassium phosphite to control Pratylenchus brachyurus in soybean and maize. Nematropica 42:170–175Google Scholar
  55. Dimkpa CO, Svatoš A, Dabrowska P et al (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25. doi: 10.1016/j.chemosphere.2008.09.079 PubMedGoogle Scholar
  56. Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694. doi: 10.1111/j.1365-3040.2009.02028.x PubMedGoogle Scholar
  57. Djavaheri M (2007) Iron-regulated metabolites of plant growth promoting Pseudomonas fluorescens WCS374: their role in induced systemic resistance. Utrecht University, UtrechtGoogle Scholar
  58. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149. doi: 10.1080/713610853 Google Scholar
  59. Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379. doi: 10.1111/j.1744-7348.2010.00439.x Google Scholar
  60. Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822. doi: 10.1093/aob/mcl255 PubMedCentralPubMedGoogle Scholar
  61. Eisenhauer N, Cesarz S, Koller R et al (2012) Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob Chang Biol 18:435–447. doi: 10.1111/j.1365-2486.2011.02555.x Google Scholar
  62. Esquivel-Cote R, Ramírez-Gama RM, Tsuzuki-Reyes G et al (2010) Azospirillum lipoferum strain AZm5 containing 1-aminocyclopropane-1-carboxylic acid deaminase improves early growth of tomato seedlings under nitrogen deficiency. Plant Soil 337:65–75. doi: 10.1007/s11104-010-0499-7 Google Scholar
  63. Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi: 10.1051/agro:2008021 Google Scholar
  64. Faure D, Dessaux Y (2007) Quorum sensing as a target for developing control strategies for the plant pathogen Pectobacterium. Eur J Plant Pathol 119:353–365. doi: 10.1007/s10658-007-9149-1 Google Scholar
  65. Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragrance J 23:213–226. doi: 10.1002/ffj.1875 Google Scholar
  66. Frapolli M, Défago G, Moënne-Loccoz Y (2010) Denaturing gradient gel electrophoretic analysis of dominant 2,4-diacetylphloroglucinol biosynthetic phlD alleles in fluorescent Pseudomonas from soils suppressive or conducive to black root rot of tobacco. Soil Biol Biochem 42:649–656. doi: 10.1016/j.soilbio.2010.01.005 Google Scholar
  67. Friesen ML, Porter SS, Stark SC et al (2011) Microbially mediated plant functional traits. In: Futuyma DJ, Shaffer HB, Simberloff D (eds) Annual review of ecology, evolution, and systematics, vol 42. Annual Reviews, Palo Alto, pp 23–46Google Scholar
  68. Fujita M, Fujita Y, Noutoshi Y et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442. doi: 10.1016/j.pbi.2006.05.014 PubMedGoogle Scholar
  69. Galland M, Gamet L, Varoquaux F et al (2012) The ethylene pathway contributes to root hair elongation induced by the beneficial bacteria Phyllobacterium brassicacearum STM196. Plant Sci 190:74–81. doi: 10.1016/j.plantsci.2012.03.008 PubMedGoogle Scholar
  70. Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343. doi: 10.1016/S0167-7799(02)02021-8 PubMedGoogle Scholar
  71. Glass JT, Cahen GL, Stoner GE (1989) The effect of phosphoric acid concentration on electrocatalysis. J Electrochem Soc 136:656–660. doi: 10.1149/1.2096705 Google Scholar
  72. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. doi: 10.1016/j.micres.2013.09.009 PubMedGoogle Scholar
  73. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68. doi: 10.1006/jtbi.1997.0532 PubMedGoogle Scholar
  74. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker PAHM, Raaijmakers JM, Bloemberg G et al (eds) New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 329–339Google Scholar
  75. Goncalves AFS, Oliveira RGB (1998) Cyanide production by Brazilian strains of Azospirillum. Rev Microbiol 29:36–39Google Scholar
  76. Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375:205–214. doi: 10.1007/s11104-013-1952-1 Google Scholar
  77. Gupta S, Arora DK, Srivastava AK (1995) Growth promotion of tomato plants by rhizobacteria and imposition of energy stress on Rhizoctonia solani. Soil Biol Biochem 27:1051–1058. doi: 10.1016/0038-0717(95)00011-3 Google Scholar
  78. Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A et al (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211. doi: 10.1034/j.1399-3054.2001.1110211.x Google Scholar
  79. Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. In: Adu-Gyamfi JJ (ed) Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht, pp 133–143Google Scholar
  80. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi: 10.1038/nrmicro1129 PubMedGoogle Scholar
  81. Haichar F e Z, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80. doi: 10.1016/j.soilbio.2014.06.017 Google Scholar
  82. Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271. doi: 10.1104/pp. 110.161752 PubMedCentralPubMedGoogle Scholar
  83. Hartmann A, Schmid M, van Tuinen D, Berg G (2008) Plant-driven selection of microbes. Plant Soil 321:235–257. doi: 10.1007/s11104-008-9814-y Google Scholar
  84. Hassouna MG, El‐Saedy MAM, Saleh HMA (1998) Biocontrol of soil‐borne plant pathogens attacking cucumber (Cucumis sativus) by Rhizobacteria in a semiarid environment. Arid Soil Res Rehabil 12:345–357. doi: 10.1080/15324989809381523 Google Scholar
  85. Hayat R, Ali S, Amara U et al (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. doi: 10.1007/s13213-010-0117-1 Google Scholar
  86. Helman Y, Chernin L (2014) Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol. doi: 10.1111/mpp.12180 PubMedGoogle Scholar
  87. Hiltner L (1904) Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache. Arbeiten der deutschen Landwirtschaftlichen Gesellschaft 98:59–78Google Scholar
  88. Hoffland E, Pieterse CMJ, Bik L, van Pelt JA (1995) Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol Mol Plant Pathol 46:309–320. doi: 10.1006/pmpp.1995.1024 Google Scholar
  89. Iavicoli A, Boutet E, Buchala A, Métraux J-P (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858. doi: 10.1094/MPMI.2003.16.10.851 PubMedGoogle Scholar
  90. IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 881Google Scholar
  91. Jalili F, Khavazi K, Pazira E et al (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674. doi: 10.1016/j.jplph.2008.08.004 PubMedGoogle Scholar
  92. Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090. doi: 10.1128/AEM. 00557-06 PubMedCentralPubMedGoogle Scholar
  93. Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441. doi: 10.1146/annurev.phyto.38.1.423 PubMedGoogle Scholar
  94. Kim HJ, Choi HS, Yang SY et al (2014) Both extracellular chitinase and a new cyclic lipopeptide, chromobactomycin, contribute to the biocontrol activity of Chromobacterium sp. C61: chitinase and cyclic lipopeptide in biocontrol. Mol Plant Pathol 15:122–132. doi: 10.1111/mpp.12070 PubMedGoogle Scholar
  95. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886. doi: 10.1038/286885a0 Google Scholar
  96. Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266. doi: 10.1094/PHYTO.2004.94.11.1259 PubMedGoogle Scholar
  97. Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151Google Scholar
  98. Kupferschmied P, Maurhofer M, Keel C (2013) Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front Plant Sci. doi: 10.3389/fpls.2013.00287 PubMedCentralPubMedGoogle Scholar
  99. Kupferschmied P, Péchy-Tarr M, Imperiali N et al (2014) Domain shuffling in a sensor protein contributed to the evolution of insect pathogenicity in plant-beneficial Pseudomonas protegens. PLoS Pathog 10:e1003964. doi: 10.1371/journal.ppat.1003964 PubMedCentralPubMedGoogle Scholar
  100. Kwak Y-S, Han S, Thomashow LS et al (2011) Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2,4-diacetylphloroglucinol, an antibiotic produced by Pseudomonas fluorescens. Appl Environ Microbiol 77:1770–1776. doi: 10.1128/AEM. 02151-10 PubMedCentralPubMedGoogle Scholar
  101. Lacey LA, Georgis R (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 44:218PubMedCentralPubMedGoogle Scholar
  102. Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328. doi: 10.1016/j.pbi.2004.03.005 PubMedGoogle Scholar
  103. Levy E, Eyal Z, Chet I, Hochman A (1992) Resistance mechanisms of Septoria tritici to antifungal products of Pseudomonas. Physiol Mol Plant Pathol 40:163–171. doi: 10.1016/0885-5765(92)90057-3 Google Scholar
  104. Li J, Brader G, Kariola T, Tapio Palva E (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491. doi: 10.1111/j.1365-313X.2006.02712.x PubMedGoogle Scholar
  105. Lièvremont D, Bertin PN, Lett M-C (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91:1229–1237. doi: 10.1016/j.biochi.2009.06.016 PubMedGoogle Scholar
  106. Ligon JM, Hill DS, Hammer PE et al (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695. doi: 10.1002/1526-4998(200008)56:8<688::AID-PS186>3.0.CO;2-V Google Scholar
  107. López-Guerrero MG, Ormeño-Orrillo E, Rosenblueth M, Martínez-Romero E (2013) Buffet hypothesis for microbial nutrition at the rhizosphere. Front Plant Sci 4:188. doi: 10.3389/fpls.2013.00188 PubMedCentralPubMedGoogle Scholar
  108. Lovisolo C, Hartung W, Schubert A (2002) Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Funct Plant Biol 29:1349–1356Google Scholar
  109. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi: 10.1146/annurev.micro.62.081307.162918 PubMedGoogle Scholar
  110. Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol 47:333–345. doi: 10.1134/S0003683811040090 Google Scholar
  111. Martínez-Absalón S, Rojas-Solís D, Hernández-León R, Prieto-Barajas C, Orozco-Mosqueda MC, Peña-Cabriales JJ, Sakuda S, Valencia-Cantero E, Santoyo G (2014) Potential use and mode of action of the new strain Bacillus Thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis Cinerea. Biocontrol Sci Technol 24:1349–1362. doi: 10.1080/09583157.2014.940846
  112. Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61. doi: 10.1146/annurev.arplant.54.031902.135035 PubMedGoogle Scholar
  113. Marulanda A, Azcón R, Chaumont F et al (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543. doi: 10.1007/s00425-010-1196-8 PubMedGoogle Scholar
  114. Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue ii. Inhibition of fungal growth by combinations of chitinase and β-1,3-Glucanase. Plant Physiol 88:936–942. doi: 10.1104/pp. 88.3.936 PubMedCentralPubMedGoogle Scholar
  115. Maurhofer M, Keel C, Haas D, Défago G (1994) Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber. Eur J Plant Pathol 100:221–232. doi: 10.1007/BF01876237 Google Scholar
  116. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572. doi: 10.1016/j.plaphy.2004.05.009 PubMedGoogle Scholar
  117. Mazzola M, Fujimoto DK, Thomashow LS, Cook RJ (1995) Variation in sensitivity of Gaeumannomyces Graminis to antibiotics produced by fluorescent Pseudomonas spp. and effect on biological control of take-all of wheat. Appl Environ Microbiol 61:2554–2559Google Scholar
  118. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant-beneficial, plant-pathogenic and human-pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. doi: 10.1111/1574-6976.12028 PubMedGoogle Scholar
  119. Meyer SL, Halbrendt JM, Carta LK et al (2009) Toxicity of 2, 4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. J Nematol 41:274PubMedCentralPubMedGoogle Scholar
  120. Meyer JB, Frapolli M, Keel C, Maurhofer M (2011) Pyrroloquinoline quinone biosynthesis gene pqqC, a novel molecular marker for studying the phylogeny and diversity of phosphate-solubilizing pseudomonads. Appl Environ Microbiol 77:7345–7354. doi: 10.1128/AEM. 05434-11 PubMedCentralPubMedGoogle Scholar
  121. Meziane H, Van Der Sluis I, Van Loon LC et al (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185. doi: 10.1111/j.1364-3703.2005.00276.x PubMedGoogle Scholar
  122. Mishra G, Zhang W, Deng F et al (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266. doi: 10.1126/science.1123769 PubMedGoogle Scholar
  123. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. doi: 10.1016/j.tplants.2004.08.009 PubMedGoogle Scholar
  124. Mohammadkhani N, Heidari R (2008) Effects of drought stress on soluble proteins in two maize varieties. Turkish J Biol 32:23–30Google Scholar
  125. Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701. doi: 10.1080/17429145.2014.902125 Google Scholar
  126. Neill SJ, Desikan R, Clarke A et al (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247. doi: 10.1093/jexbot/53.372.1237 PubMedGoogle Scholar
  127. Omar MNA, Osman MEH, Kasim WA, El-Daim IAA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and Water Stress. Springer, Dordrecht, pp 133–147Google Scholar
  128. Ongena M, Jacques P (2008) Bacilus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125PubMedGoogle Scholar
  129. Ongena M, Daayf F, Jacques P et al (2000) Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathol 49:523–530. doi: 10.1046/j.1365-3059.2000.00468.x Google Scholar
  130. Pal SS (1998) Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177. doi: 10.1023/A:1004318814385 Google Scholar
  131. Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol Control 18:2–9. doi: 10.1006/bcon.2000.0815 Google Scholar
  132. Péchy-Tarr M, Bruck DJ, Maurhofer M et al (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10:2368–2386. doi: 10.1111/j.1462-2920.2008.01662.x PubMedGoogle Scholar
  133. Péchy-Tarr M, Borel N, Kupferschmied P et al (2013) Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environ Microbiol 15:736–750. doi: 10.1111/1462-2920.12050 PubMedGoogle Scholar
  134. Pereira SIA, Barbosa L, Castro PML (2014) Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. Int J Environ Sci Technol 1–16. doi:  10.1007/s13762-014-0614-z
  135. Pereyra MA, García P, Colabelli MN et al (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97. doi: 10.1016/j.apsoil.2011.11.007 Google Scholar
  136. Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular. Plant Cell Environ 26:189–199. doi: 10.1046/j.1365-3040.2003.00956.x Google Scholar
  137. Pieterse CM, van Wees SC, Hoffland E et al (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237. doi: 10.1105/tpc.8.8.1225 PubMedCentralPubMedGoogle Scholar
  138. Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA, Van Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544. doi: 10.1055/s-2002-35441 Google Scholar
  139. Pieterse CMJ, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. doi: 10.1146/annurev-phyto-082712-102340 PubMedGoogle Scholar
  140. Prigent-Combaret C, Blaha D, Pothier JF et al (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiol Ecol 65:202–219. doi: 10.1111/j.1574-6941.2008.00474.x PubMedGoogle Scholar
  141. Pulsawat W, Leksawasdi N, Rogers PL, Foster LJR (2003) Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett 25:1267–1270. doi: 10.1023/A:1025083116343 PubMedGoogle Scholar
  142. Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 19:699–710. doi: 10.1094/MPMI-19-0699 PubMedGoogle Scholar
  143. Ramamoorthy V, Viswanathan R, Raguchander T et al (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11. doi: 10.1016/S0261-2194(00)00056-9 Google Scholar
  144. Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927. doi: 10.1111/j.1365-2486.2012.02639.x Google Scholar
  145. Ramirez-Puebla ST, Servin-Garciduenas LE, Jimenez-Marin B et al (2013) Gut and root microbiota commonalities. Appl Environ Microbiol 79:2–9. doi: 10.1128/AEM. 02553-12 PubMedCentralPubMedGoogle Scholar
  146. Ramos Solano B, Barriuso Maicas J, Pereyra de la Iglesia MT et al (2008) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology 98:451–457. doi: 10.1094/PHYTO-98-4-0451 PubMedGoogle Scholar
  147. Reetha AK, Pavani SL, Mohan S (2014) Hydrogen cyanide production ability by bacterial antagonist and their antibiotics inhibition potential on Macrophomina phaseolina (Tassi.) Goid. Int J Curr Microbiol Appl Sci 3:172–178Google Scholar
  148. Reichman SM (2014) Probing the plant growth-promoting and heavy metal tolerance characteristics of Bradyrhizobium japonicum CB1809. Eur J Soil Biol 63:7–13. doi: 10.1016/j.ejsobi.2014.04.001 Google Scholar
  149. Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518. doi: 10.1105/tpc.12.4.507 PubMedCentralPubMedGoogle Scholar
  150. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi: 10.1007/s11104-009-9895-2 Google Scholar
  151. Rodrigues EP, Rodrigues LS, de Oliveira ALM et al (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261. doi: 10.1007/s11104-007-9476-1 Google Scholar
  152. Rodríguez-Navarro DN, Dardanelli MS, Ruíz-Saínz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272:127–136. doi: 10.1111/j.1574-6968.2007.00761.x PubMedGoogle Scholar
  153. Roelfsema MRG, Levchenko V, Hedrich R (2004) ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. Plant J 37:578–588PubMedGoogle Scholar
  154. Romero AM, Correa OS, Moccia S, Rivas JG (2003) Effect of Azospirillum-mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato. J Appl Microbiol 95:832–838. doi: 10.1046/j.1365-2672.2003.02053.x PubMedGoogle Scholar
  155. Romero AM, Vega D, Correa OS (2014) Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Appl Soil Ecol 82:38–43. doi: 10.1016/j.apsoil.2014.05.010 Google Scholar
  156. Rouch DA, Lee BT, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. J Ind Microbiol 14:132–141. doi: 10.1007/BF01569895 PubMedGoogle Scholar
  157. Ruffner B, Péchy-Tarr M, Ryffel F et al (2013) Oral insecticidal activity of plant-associated pseudomonads. Environ Microbiol 15:751–763. doi: 10.1111/j.1462-2920.2012.02884.x PubMedGoogle Scholar
  158. Ruíz-Sánchez M, Armada E, Muñoz Y et al (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037. doi: 10.1016/j.jplph.2010.12.019 PubMedGoogle Scholar
  159. Russo A, Vettori L, Felici C et al (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319. doi: 10.1016/j.jbiotec.2008.01.020 PubMedGoogle Scholar
  160. Ryall B, Lee X, Zlosnik JE et al (2008) Bacteria of the Burkholderia cepacia complex are cyanogenic under biofilm and colonial growth conditions. BMC Microbiol 8:108PubMedCentralPubMedGoogle Scholar
  161. Ryu CM, Murphy JF, Mysore KS, Kloepper JW (2004) Plant growth-promoting rhizobacterial systematically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392. doi: 10.1111/j.1365-313X.2004.02142.x PubMedGoogle Scholar
  162. Sankari JUS, Dinakar S, Sekar C (2011) Dual effect of Azospirillum exopolysaccharides (EPS) on the enhancement of plant growth and biocontrol of blast (Pyricularia oryzae) disease in upland rice (var. ASD-19). J Phytol 3:16–19Google Scholar
  163. Schenk PM, Kazan K, Wilson I et al (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655–11660. doi: 10.1073/pnas.97.21.11655 PubMedCentralPubMedGoogle Scholar
  164. Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302. doi: 10.1016/j.pbi.2007.04.014 PubMedGoogle Scholar
  165. Shah S, Karkhanis V, Desai DA (1992) Isolation and characterization of siderophore, with antimicrobial activity, from Azospirillum lipoferum M. Curr Microbiol 25:347–351. doi: 10.1007/BF01577233 Google Scholar
  166. Siddikee MA, Chauhan PS, Anandham R et al (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584PubMedGoogle Scholar
  167. Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649. doi: 10.1128/AEM. 71.9.5646-5649.2005 PubMedCentralPubMedGoogle Scholar
  168. Somers E, Ptacek D, Gysegom P et al (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810. doi: 10.1128/AEM. 71.4.1803-1810.2005 PubMedCentralPubMedGoogle Scholar
  169. Stutz EW, Défago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185. doi: 10.1094/Phyto-76-181 Google Scholar
  170. Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234Google Scholar
  171. Tapia-Hernández A, Ma M-E, C-M J (1989) Production of bacteriocins and siderophore-like activity by Azospirillum brasilense. Microbios 64:73–83Google Scholar
  172. Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508PubMedCentralPubMedGoogle Scholar
  173. Timmusk S, Wagner EGH (1999) The plant-growth-promoting Rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959. doi: 10.1094/MPMI.1999.12.11.951 PubMedGoogle Scholar
  174. Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403. doi: 10.1016/j.pbi.2005.05.014 PubMedGoogle Scholar
  175. Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286. doi: 10.1007/s00203-010-0672-7 PubMedGoogle Scholar
  176. Tortora ML, Díaz-Ricci JC, Pedraza RO (2012) Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant Soil 356:279–290. doi: 10.1007/s11104-011-0916-6 Google Scholar
  177. Tripathi RK, Gottlieb D (1969) Mechanism of action of the antifungal antibiotic pyrrolnitrin. J Bacteriol 100:310–318PubMedCentralPubMedGoogle Scholar
  178. Tripathi M, Munot HP, Shouche Y et al (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237. doi: 10.1007/s00284-004-4459-4 PubMedGoogle Scholar
  179. Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496. doi: 10.1007/s00284-009-9464-1 PubMedGoogle Scholar
  180. Vacheron J, Desbrosses G, Bouffaud M-L et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. doi: 10.3389/fpls.2013.00356 PubMedCentralPubMedGoogle Scholar
  181. Vachon V, Laprade R, Schwartz J-L (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111:1–12. doi: 10.1016/j.jip.2012.05.001 PubMedGoogle Scholar
  182. Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi: 10.1111/j.1461-0248.2007.01139.x PubMedGoogle Scholar
  183. Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254. doi: 10.1007/s10658-007-9165-1 Google Scholar
  184. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483. doi: 10.1146/annurev.phyto.36.1.453 PubMedGoogle Scholar
  185. Van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191. doi: 10.1016/j.tplants.2006.02.005 PubMedGoogle Scholar
  186. Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 81:728–734Google Scholar
  187. van Peer R, Schippers B (1992) Lipopolysaccharides of Plant-Growth Promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Netherlands J Plant Pathol 98:129–139. doi: 10.1007/BF01996325
  188. Van Wees SCM, Pieterse CMJ, Trijssenaar A et al (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724. doi: 10.1094/MPMI.1997.10.6.716 PubMedGoogle Scholar
  189. Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol 14:240–245. doi: 10.1016/j.pbi.2011.04.006 PubMedGoogle Scholar
  190. Vivas A, Marulanda A, Ruiz-Lozano JM et al (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256. doi: 10.1007/s00572-003-0223-z PubMedGoogle Scholar
  191. Vleesschauwer DD, Djavaheri M, Bakker PAHM, Höfte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148:1996–2012. doi: 10.1104/pp. 108.127878 PubMedCentralPubMedGoogle Scholar
  192. Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358PubMedCentralPubMedGoogle Scholar
  193. Volfson V, Fibach-Paldi S, Paulucci NS et al (2013) Phenotypic variation in Azospirillum brasilense Sp7 does not influence plant growth promotion effects. Soil Biol Biochem 67:255–262. doi: 10.1016/j.soilbio.2013.09.008 Google Scholar
  194. Wang YQ, Ohara Y, Nakayashiki H et al (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant Microbe Interact 18:385–396. doi: 10.1094/mpmi-18-0385 PubMedGoogle Scholar
  195. Wang C-J, Yang W, Wang C et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting Rhizobacterium strains. PLoS One. doi: 10.1371/journal.pone.0052565 Google Scholar
  196. Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449–455. doi: 10.1016/j.pbi.2004.04.002 PubMedGoogle Scholar
  197. Westgate ME, Boyer JS (1985) Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta 164:540–549. doi: 10.1007/BF00395973 PubMedGoogle Scholar
  198. Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G et al (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430. doi: 10.1371/journal.pgen.1002430 PubMedCentralPubMedGoogle Scholar
  199. Wu K-M, Lu Y-H, Feng H-Q et al (2008) Suppression of cotton bollworm in multiple crops in china in areas with bt toxin-containing cotton. Science 321:1676–1678. doi: 10.1126/science.1160550 PubMedGoogle Scholar
  200. Xue Q-Y, Chen Y, Li S-M, Chen L-F, Ding G-C, Guo D-W, Guo J-H (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 48:252–258. doi: 10.1016/j.biocontrol.2008.11.004 Google Scholar
  201. Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. doi: 10.1016/j.tplants.2008.10.004 PubMedGoogle Scholar
  202. Yang M-M, Wen S-S, Mavrodi DV, Mavrodi OV, von Wettstein D, Thomashow LS, Guo J-H, Weller DM (2014) Biological control of wheat root diseases by the CLP-producing strain Pseudomonas Fluorescens HC1–07. Phytopathology 104:248–256. doi: 10.1094/PHYTO-05-13-0142-R PubMedGoogle Scholar
  203. Yasuda M, Isawa T, Shinozaki S et al (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599PubMedGoogle Scholar
  204. Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21. doi: 10.1016/S1161-0301(02)00090-4 Google Scholar
  205. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997. doi: 10.1016/j.chemosphere.2005.12.057 PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jordan Vacheron
    • 1
    • 2
    • 3
  • Sébastien Renoud
    • 1
    • 2
    • 3
  • Daniel Muller
    • 1
    • 2
    • 3
  • Olubukola Oluranti Babalola
    • 4
  • Claire Prigent-Combaret
    • 1
    • 2
    • 3
  1. 1.Université de LyonLyonFrance
  2. 2.Université Lyon 1VilleurbanneFrance
  3. 3.CNRS, UMR5557, Ecologie MicrobienneVilleurbanneFrance
  4. 4.Department of Biological Sciences, Faculty of Agriculture, Science and TechnologyNorth-West UniversityMmabathoSouth Africa

Personalised recommendations