Cell–Cell Communication in Azospirillum and Related PGPR

Abstract

Quorum-sensing (QS) regulation based on N-acyl-l-homoserine lactones (AHL) is used to control various phenotypes that are often essential for interaction with a eukaryotic host, notably for plant-associated bacteria. Technical methodologies currently used to reveal AHL production in a specific strain and to decipher phenotypes under QS regulation are surveyed in this chapter. Analyses conducted on the genus Azospirillum and on other related PGPR are used to illustrate the different steps of the approach. Among the genus Azospirillum, a survey of 40 strains belonging to six species revealed AHL production for four strains belonging to the lipoferum species or to a close undefined species and isolated from a rice rhizosphere. Identification of genes mediating QS and regulating functions indicate that (1) distinct QS networks are present in some strains and seem to have been acquired independently by horizontal gene transfer; (2) QS regulation is strain specific with several phenotypes and numerous proteins being regulated by AHL-based QS in A. lipoferum B518, whereas no change is observed in A. lipoferum TVV3 deficient in AHL production; and (3) QS is dedicated to regulating functions linked to rhizosphere competence and adaptation to plant roots in A. lipoferum B518.

References

  1. Acosta-Cruz E, Wisniewski-Dyé F, Rouy Z, Barbe V, Valdes M, Mavingui P (2012) Insights into the 1.59-Mbp largest plasmid of Azospirillum brasilense CBG497. Arch Microbiol 194:725–736CrossRefPubMedGoogle Scholar
  2. Aguilar C, Friscina A, Devescovi G, Kojic M, Venturi V (2003) Identification of quorum-sensing-regulated genes of Burkholderia cepacia. J Bacteriol 185:6456–6462CrossRefPubMedCentralPubMedGoogle Scholar
  3. Alavi P, Muller H, Cardinale M, Zachow C, Sanchez MB, Martinez JL, Berg G (2013) The DSF quorum sensing system controls the positive influence of Stenotrophomonas maltophilia on plants. PLoS One 8:e67103CrossRefPubMedCentralPubMedGoogle Scholar
  4. Andersen JB, Heydorn A, Hentzer M et al (2001) gfp-Based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585CrossRefPubMedCentralPubMedGoogle Scholar
  5. Arevalo-Ferro C, Reil G, Gorg A, Eberl L, Riedel K (2005) Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. Syst Appl Microbiol 28:87–114CrossRefPubMedGoogle Scholar
  6. Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP, Stewart GS, Williams P (1992) N-(3-Oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288:997–1004PubMedCentralPubMedGoogle Scholar
  7. Bally R, Givaudan A (1988) Mobilization and transfer of Azospirillum lipoferum plasmid by the Tn5-Mob transposon into a plasmid-free Agrobacterium tumefaciens strain. Can J Microbiol 34:1354–1357CrossRefPubMedGoogle Scholar
  8. Barnard AM, Bowden SD, Burr T, Coulthurst SJ, Monson RE, Salmond GP (2007) Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc Lond B Biol Sci 362:1165–1183CrossRefPubMedCentralPubMedGoogle Scholar
  9. Birkeland NK, Lindqvist BH, Christie GE (1991) Control of bacteriophage P2 gene expression: analysis of transcription of the ogr gene. J Bacteriol 173:6927–6934PubMedCentralPubMedGoogle Scholar
  10. Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dyé F (2008) A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol 159:699–708CrossRefPubMedGoogle Scholar
  11. Brelles-Marino G, Bedmar EJ (2001) Detection, purification and characterisation of quorum-sensing signal molecules in plant-associated bacteria. J Biotechnol 91:197–209CrossRefPubMedGoogle Scholar
  12. Cantero L, Palacios JM, Ruiz-Argueso T, Imperial J (2006) Proteomic analysis of quorum sensing in Rhizobium leguminosarum biovar viciae UPM791. Proteomics 6(Suppl 1):S97–S106CrossRefPubMedGoogle Scholar
  13. Case RJ, Labbate M, Kjelleberg S (2008) AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2:345–349CrossRefPubMedGoogle Scholar
  14. Chapalain A, Vial L, Laprade N, Dekimpe V, Perreault J, Deziel E (2013) Identification of quorum sensing-controlled genes in Burkholderia ambifaria. Microbiologyopen 2:226–242CrossRefPubMedCentralPubMedGoogle Scholar
  15. Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14:17477–17500CrossRefPubMedCentralPubMedGoogle Scholar
  16. Christie GE, Temple LM, Bartlett BA, Goodwin TS (2002) Programmed translational frameshift in the bacteriophage P2 FETUD tail gene operon. J Bacteriol 184:6522–6531CrossRefPubMedCentralPubMedGoogle Scholar
  17. Coutinho BG, Mitter B, Talbi C et al (2013) Regulon studies and in planta role of the BraI/R quorum-sensing system in the plant-beneficial Burkholderia cluster. Appl Environ Microbiol 79:4421–4432CrossRefPubMedCentralPubMedGoogle Scholar
  18. DeAngelis KM, Firestone MK, Lindow SE (2007) Sensitive whole-cell biosensor suitable for detecting a variety of N-acyl homoserine lactones in intact rhizosphere microbial communities. Appl Environ Microbiol 73:3724–3727CrossRefPubMedCentralPubMedGoogle Scholar
  19. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A 97:3526–3531CrossRefPubMedCentralPubMedGoogle Scholar
  20. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449CrossRefPubMedGoogle Scholar
  21. Elasri M, Delorme S, Lemanceau P et al (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209CrossRefPubMedCentralPubMedGoogle Scholar
  22. Fekete A, Frommberger M, Rothballer M et al (2007) Identification of bacterial N-acylhomoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Anal Bioanal Chem 387:455–467CrossRefPubMedGoogle Scholar
  23. Frommberger M, Hertkorn N, Englmann M, Jakoby S, Hartmann A, Kettrup A, Schmitt-Kopplin P (2005) Analysis of N-acylhomoserine lactones after alkaline hydrolysis and anion-exchange solid-phase extraction by capillary zone electrophoresis-mass spectrometry. Electrophoresis 26:1523–1532CrossRefPubMedGoogle Scholar
  24. Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796–2806PubMedCentralPubMedGoogle Scholar
  25. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275PubMedCentralPubMedGoogle Scholar
  26. Gambello MJ, Iglewski BH (1991) Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 173:3000–3009PubMedCentralPubMedGoogle Scholar
  27. Gray KM, Garey JR (2001) The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology 147:2379–2387PubMedGoogle Scholar
  28. Gray KM, Pearson JP, Downie JA, Boboye BE, Greenberg EP (1996) Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J Bacteriol 178:372–376PubMedCentralPubMedGoogle Scholar
  29. Hauberg-Lotte L, Klingenberg H, Scharf C et al (2012) Environmental factors affecting the expression of pilAB as well as the proteome and transcriptome of the grass endophyte Azoarcus sp. strain BH72. PLoS One 7:e30421CrossRefPubMedCentralPubMedGoogle Scholar
  30. Hentzer M, Riedel K, Rasmussen TB et al (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102PubMedGoogle Scholar
  31. Hussain MB, Zhang HB, Xu JL, Liu Q, Jiang Z, Zhang LH (2008) The acyl-homoserine lactone-type quorum-sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae. J Bacteriol 190:1045–1053CrossRefPubMedCentralPubMedGoogle Scholar
  32. Kaneko T, Minamisawa K, Isawa T et al (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50CrossRefPubMedCentralPubMedGoogle Scholar
  33. Krysciak D, Grote J, Rodriguez Orbegoso M et al (2014) RNA sequencing analysis of the broad-host-range strain Sinorhizobium fredii NGR234 identifies a large set of genes linked to quorum sensing-dependent regulation in the background of a traI and ngrI deletion mutant. Appl Environ Microbiol 80:5655–5671CrossRefPubMedCentralPubMedGoogle Scholar
  34. Kukolj G, Tolias PP, DuBow MS (1989) Purification and characterization of the Ner repressor of bacteriophage Mu. FEBS Lett 244:369–375CrossRefPubMedGoogle Scholar
  35. Laue BE, Jiang Y, Chhabra SR et al (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:2469–2480PubMedGoogle Scholar
  36. Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181:748–756PubMedCentralPubMedGoogle Scholar
  37. Li X, Fekete A, Englmann M et al (2006) Development and application of a method for the analysis of N-acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography. J Chromatogr A 1134:186–193CrossRefPubMedGoogle Scholar
  38. Lithgow JK, Danino VE, Jones J, Downie JA (2001) Analysis of N-acyl homoserine-lactone quorum-sensing molecules made by different strains and biovars of Rhizobium leguminosarum containing different symbiotic plasmids. Plant Soil 232:3–12CrossRefGoogle Scholar
  39. Liu X, Bimerew M, Ma Y et al (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270:299–305CrossRefPubMedGoogle Scholar
  40. Llamas I, Keshavan N, Gonzalez JE (2004) Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl homoserine lactones. Appl Environ Microbiol 70:3715–3723CrossRefPubMedCentralPubMedGoogle Scholar
  41. Lumjiaktase P, Aguilar C, Battin T, Riedel K, Eberl L (2010) Construction of self-transmissible green fluorescent protein-based biosensor plasmids and their use for identification of N-acyl homoserine-producing bacteria in lake sediments. Appl Environ Microbiol 76:6119–6127CrossRefPubMedCentralPubMedGoogle Scholar
  42. Luo ZQ, Su S, Farrand SK (2003) In situ activation of the quorum-sensing transcription factor TraR by cognate and noncognate acyl-homoserine lactone ligands: kinetics and consequences. J Bacteriol 185:5665–5672CrossRefPubMedCentralPubMedGoogle Scholar
  43. McClean KH, Winson MK, Fish L et al (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711CrossRefPubMedGoogle Scholar
  44. McLean RJ, Pierson LS III, Fuqua C (2004) A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods 58:351–360CrossRefPubMedGoogle Scholar
  45. Morin D, Grasland B, Vallée-Rehel K, Dufau C, Haras D (2003) On-line high-performance liquid chromatography-mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A 1002:79–92CrossRefPubMedGoogle Scholar
  46. Ortori CA, Atkinson S, Chhabra SR, Camara M, Williams P, Barrett DA (2007) Comprehensive profiling of N-acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole-linear ion trap mass spectrometry. Anal Bioanal Chem 387:497–511CrossRefPubMedGoogle Scholar
  47. Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:1490–1494CrossRefPubMedCentralPubMedGoogle Scholar
  48. Pierson LS III, Pierson EA (2007) Roles of diffusible signals in communication among plant-associated bacteria. Phytopathology 97:227–232CrossRefPubMedGoogle Scholar
  49. Pierson LS III, Keppenne VD, Wood DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30–84 is regulated by PhzR in response to cell density. J Bacteriol 176:3966–3974PubMedCentralPubMedGoogle Scholar
  50. Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18:682–693CrossRefPubMedGoogle Scholar
  51. Riedel K, Hentzer M, Geisenberger O et al (2001) N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:3249–3262PubMedGoogle Scholar
  52. Rivera D, Revale S, Molina R et al (2014) Complete genome sequence of the model rhizosphere strain Azospirillum brasilense Az39, successfully applied in agriculture. Genome Announc 2:4CrossRefGoogle Scholar
  53. Sanchez-Contreras M, Bauer WD, Gao M, Robinson JB, Allan Downie J (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond B Biol Sci 362:1149–1163CrossRefPubMedCentralPubMedGoogle Scholar
  54. Sant’Anna FH, Almeida LG, Cecagno R et al (2011) Genomic insights into the versatility of the plant growth-promoting bacterium Azospirillum amazonense. BMC Genomics 12:409CrossRefPubMedCentralPubMedGoogle Scholar
  55. Schaefer AL, Greenberg EP, Parsek MR (2001) Acylated homoserine lactone detection in Pseudomonas aeruginosa biofilms by radiolabel assay. Methods Enzymol 336:41–47CrossRefPubMedGoogle Scholar
  56. Schaefer AL, Taylor TA, Beatty JT, Greenberg EP (2002) Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production. J Bacteriol 184:6515–6521CrossRefPubMedCentralPubMedGoogle Scholar
  57. Schaefer AL, Greenberg EP, Oliver CM et al (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599CrossRefPubMedGoogle Scholar
  58. Schikora A, Schenk ST, Stein E, Molitor A, Zuccaro A, Kogel KH (2011) N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol 157:1407–1418CrossRefPubMedCentralPubMedGoogle Scholar
  59. Schuhegger R, Ihring A, Gantner S et al (2006) Induction of systemic resistance in tomato by N-acyl-l-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918CrossRefPubMedGoogle Scholar
  60. Schupp PJ, Charlton TS, Taylor MW, Kjelleberg S, Steinberg PD (2005) Use of solid-phase extraction to enable enhanced detection of acyl homoserine lactones (AHLs) in environmental samples. Anal Bioanal Chem 383:132–137CrossRefPubMedGoogle Scholar
  61. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041CrossRefPubMedCentralPubMedGoogle Scholar
  62. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764CrossRefPubMedGoogle Scholar
  63. Steidle A, Allesen-Holm M, Riedel K, Berg G, Givskov M, Molin S, Eberl L (2002) Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 68:6371–6382CrossRefPubMedCentralPubMedGoogle Scholar
  64. Steindler L, Venturi V (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–9CrossRefPubMedGoogle Scholar
  65. Steindler L, Devescovi G, Subramoni S, Venturi V (2008) A versatile plasmid biosensor useful to identify quorum sensing LuxR-family orphans in bacterial strains. J Microbiol Methods 73:273–275CrossRefPubMedGoogle Scholar
  66. Suarez-Moreno ZR, Devescovi G, Myers M, Hallack L, Mendonca-Previato L, Caballero-Mellado J, Venturi V (2010) Commonalities and differences in regulation of N-acyl homoserine lactone quorum sensing in the beneficial plant-associated Burkholderia species cluster. Appl Environ Microbiol 76:4302–4317CrossRefPubMedCentralPubMedGoogle Scholar
  67. Subsin B, Chambers CE, Visser MB, Sokol PA (2007) Identification of genes regulated by the cepIR quorum-sensing system in Burkholderia cenocepacia by high-throughput screening of a random promoter library. J Bacteriol 189:968–979CrossRefPubMedCentralPubMedGoogle Scholar
  68. Vial L, Cuny C, Gluchoff-Fiasson K et al (2006) N-acyl-homoserine lactone-mediated quorum-sensing in Azospirillum: an exception rather than a rule. FEMS Microbiol Ecol 58:155–168CrossRefPubMedGoogle Scholar
  69. von Bodman SB, Majerczak DR, Coplin DL (1998) A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci U S A 95:7687–7692CrossRefGoogle Scholar
  70. Wagner-Dobler I, Thiel V, Eberl L et al (2005) Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. Chembiochem 6:2195–2206CrossRefPubMedGoogle Scholar
  71. Wang J, Quan C, Wang X, Zhao P, Fan S (2010) Extraction, purification and identification of bacterial signal molecules based on N-acyl homoserine lactones. Microb Biotechnol 4:479–490CrossRefPubMedGoogle Scholar
  72. Watson WT, Minogue TD, Val DL, von Bodman SB, Churchill ME (2002) Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9:685–694CrossRefPubMedGoogle Scholar
  73. White CE, Winans SC (2007) Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos Trans R Soc Lond B Biol Sci 362:1135–1148CrossRefPubMedCentralPubMedGoogle Scholar
  74. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404CrossRefPubMedGoogle Scholar
  75. Williams P, Winzer K, Chan WC, Camara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 362:1119–1134CrossRefPubMedCentralPubMedGoogle Scholar
  76. Winson MK, Camara M, Latifi A et al (1995) Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:9427–9431CrossRefPubMedCentralPubMedGoogle Scholar
  77. Winson MK, Swift S, Fish L et al (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192CrossRefPubMedGoogle Scholar
  78. Wisniewski-Dyé F, Jones J, Chhabra SR, Downie JA (2002) raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum. J Bacteriol 184:1597–1606CrossRefPubMedCentralPubMedGoogle Scholar
  79. Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G et al (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430CrossRefPubMedCentralPubMedGoogle Scholar
  80. Wisniewski-Dyé F, Lozano L, Acosta-Cruz E et al (2012) Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes (Basel) 3:576–602CrossRefGoogle Scholar
  81. Zhang Z, Pierson LS III (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67:4305–4315CrossRefPubMedCentralPubMedGoogle Scholar
  82. Zhang L, Murphy PJ, Kerr A, Tate ME (1993) Agrobacterium conjugation and gene regulation by N-acyl-l-homoserine lactones. Nature 362:446–448CrossRefPubMedGoogle Scholar
  83. Zhu J, Chai Y, Zhong Z, Li S, Winans SC (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69:6949–6953CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Université de Lyon, UMR 5557 CNRS, Ecologie MicrobienneVilleurbanneFrance

Personalised recommendations