Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 265))

Abstract

Typically, video copy detection can be done by comparing signatures of new content with of known contents in database. However, this method requires high computation for both database generation and signature detection. In this paper, we proposed an efficient and fast video signature for video copy protection. The video features of a scene are extracted and then transformed to be a signature as a bit-wise string. All string signatures then are stored and manipulated by n-gram based text retrieval algorithm, which is proposed as a replacement with computation-intensive content similarity detection algorithm. The evaluation on the CC_WEB_VIDEO dataset shows that its accuracy is 85% where our baseline algorithms achieved only 75%; however, our algorithm is around 20 times as fast as the baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://www.youtube.com

  2. Mogul, J.C., Chan, Y.M., Kelly, T.: Design, implementation, and evaluation of duplicate transfer detection in HTTP. In: Proceedings of the 1st Conference on Symposium on Networked Systems Design and Implementation, vol. 1, p. 4. USENIX Association, San Francisco (2004)

    Google Scholar 

  3. Hampapur, A., Hyun, K.-H., Bolle, R.: Comparison of Sequence Matching Techniques for Video Copy Detection (2000)

    Google Scholar 

  4. Wu, V.K.Y., Polychronopoulos, C.: Efficient real-time similarity detection for video caching and streaming. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 2249–2252 (2012)

    Google Scholar 

  5. BaoFeng, L., HaiBin, C., Zheng, C.: An Efficient Method for Video Similarity Search with Video Signature. In: 2010 International Conference on Computational and Information Sciences (ICCIS), pp. 713–716 (2010)

    Google Scholar 

  6. Sánchez, J.M., Binefa, X., Vitriá, J., Radeva, P.: Local Color Analysis for Scene Break Detection Applied to TV Commercials Recognition. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 237–244. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Lienhart, R., Kuhmunch, C., Effelsberg, W.: On the detection and recognition of television commercials. In: IEEE International Conference on Multimedia Computing and Systems 1997, pp. 509–516 (1997)

    Google Scholar 

  8. Xian-Sheng, H., Xian, C., Hong-Jiang, Z.: Robust video signature based on ordinal measure. In: 2004 International Conference on Image Processing, ICIP 2004, vol. 681, pp. 685–688 (2014)

    Google Scholar 

  9. Cao, Z., Zhu, M.: An efficient video similarity search strategy for video-on-demand systems. In: 2nd IEEE International Conference on Broadband Network & Multimedia Technology, IC-BNMT 2009, pp. 174–178 (2009)

    Google Scholar 

  10. Shang, L., Yang, L., Wang, F., Chan, K.-P., Hua, X.-S.: Real-time large scale near-duplicate web video retrieval. In: Proceedings of the International Conference on Multimedia, pp. 531–540. ACM, Firenze (2010)

    Google Scholar 

  11. Mohan, R.: Video sequence matching. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3696, pp. 3697–3700 (1998)

    Google Scholar 

  12. Shivakumar, N., Indyk, G.I.P.: Finding pirated video sequences on the internet (1999)

    Google Scholar 

  13. Xie, Q., Huang, Z., Shen, H.T., Zhou, X., Pang, C.: Quick identification of near-duplicate video sequences with cut signature. World Wide Web 15, 355–382 (2012)

    Article  Google Scholar 

  14. Ardizzone, E., La Cascia, M., Molinelli, D.: Motion and color-based video indexing and retrieval. In: Proceedings of the 13th International Conference on Pattern Recognition, 1996, vol. 133, pp. 135–139 (1996)

    Google Scholar 

  15. Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Qian, H., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: the QBIC system. Computer 28, 23–32 (1995)

    Article  Google Scholar 

  16. Dong, W., Wang, Z., Charikar, M., Li, K.: Efficiently matching sets of features with random histograms. In: Proceedings of the 16th ACM International Conference on Multimedia, pp. 179–188. ACM, Vancouver (2008)

    Chapter  Google Scholar 

  17. Wan-Lei, Z., Xiao, W., Chong-Wah, N.: On the Annotation of Web Videos by Efficient Near-Duplicate Search. IEEE Transactions on Multimedia 12, 448–461 (2010)

    Article  Google Scholar 

  18. Junfeng, J., Xiao-Ping, Z., Loui, A.C.: A new video similarity measure model based on video time density function and dynamic programming. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1201–1204 (2011)

    Google Scholar 

  19. Wu, X., Hauptmann, A.G., Ngo, C.-W.: Practical elimination of near-duplicates from web video search. In: Proceedings of the 15th International Conference on Multimedia, pp. 218–227. ACM, Augsburg (2007)

    Chapter  Google Scholar 

  20. Dunning, T.: Statistical Identification of Language. Computing Research Laboratory. New Mexico State University (1994)

    Google Scholar 

  21. Khoo, C.S.G., Loh, T.E.: Using statistical and contextual information to identify two-and three-character words in Chinese text. J. Am. Soc. Inf. Sci. Technol. 53, 365–377 (2002)

    Article  Google Scholar 

  22. Tomović, A., Janičić, P., Kešelj, V.: n-Gram-based classification and unsupervised hierarchical clustering of genome sequences. Computer Methods and Programs in Biomedicine 81, 137–153 (2006)

    Article  Google Scholar 

  23. Pavlović-Lažetić, G.M., Mitić, N.S., Beljanski, M.V.: n-Gram characterization of genomic islands in bacterial genomes. Computer Methods and Programs in Biomedicine 93, 241–256 (2009)

    Article  Google Scholar 

  24. Radomski, J.P., Slonimski, P.P.: Primary sequences of proteins from complete genomes display a singular periodicity: Alignment-free N-gram analysis. Comptes Rendus Biologies 330, 33–48 (2007)

    Article  Google Scholar 

  25. Xiao, W., Chong-Wah, N., Hauptmann, A.G., Hung-Khoon, T.: Real-Time Near-Duplicate Elimination for Web Video Search With Content and Context. IEEE Transactions on Multimedia 11, 196–207 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paween Khoenkaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Khoenkaw, P., Piamsa-nga, P. (2014). N-Gram Signature for Video Copy Detection. In: Boonkrong, S., Unger, H., Meesad, P. (eds) Recent Advances in Information and Communication Technology. Advances in Intelligent Systems and Computing, vol 265. Springer, Cham. https://doi.org/10.1007/978-3-319-06538-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06538-0_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06537-3

  • Online ISBN: 978-3-319-06538-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics