Preparing the Next Generation of Education Researchers for Big Data in Higher Education


Research in social science, education, psychology, and humanities is still dominated by research methodologies that primarily divide the world into either qualitative or quantitative approaches. This relatively small toolkit for understanding complex phenomena in the world limits the next generation of education researchers when they are faced with the increased availability of big data. In this chapter, we are calling attention to data mining, model-based methods, machine learning, and data science in general as a new toolkit for the next generation of education researchers and for the inclusion of these topics in researcher preparation programs. A review of the state of the art in research methodology courses and units shows that most follow a traditional approach focusing on quantitative and/or qualitative research methodologies. Therefore, this chapter makes a case for a new data science foundation for education research methodology. Finally, benefits and limitations of computationally intensive modeling approaches are critically reviewed.


Learning analytics Big data Research methodology Machine learning Higher education research Computational modeling 


  1. Bar-Yam, Y. (1997). Dynamics of complex systems. Reading, MA: Addison-Wesley.Google Scholar
  2. Beinhocker, E. (2006). The origin of wealth: Evolution, complexity and the radical remaking of economics. Boston, MA: Harvard Business School Press.Google Scholar
  3. Berland, M., Baker, R. S., & Bilkstein, P. (2014). Educational data mining and learning analytics: Applications to constructionist research. Technology, Knowledge and Learning, 19(1-2), 205–220. doi: 10.1007/s10758-014-9223-7.CrossRefGoogle Scholar
  4. Bortz, J., & Döring, N. (1995). Forschungsmethoden und Evaluation. Berlin: Springer.CrossRefGoogle Scholar
  5. Bryman, A. (1988). Quantity and quality in social research. London: Unwin Hyman.CrossRefGoogle Scholar
  6. Caporaso, J. A. (1995). Research design, falsification, and the qualitative-quantitative divide. American Political Science Review, 89(2), 457–460. doi: 10.2307/2082441.CrossRefGoogle Scholar
  7. Chaitin, G. (2003). Algorithmic Information Theory Third Printing. Computer.Google Scholar
  8. Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education (7th ed.). New York: Routledge.Google Scholar
  9. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. doi: 10.1007/bf00994018.Google Scholar
  10. Creswell, J. W. (2008). Educational research. Planning, conducting, and evaluating quantitative and qualitative research. Upper Saddle River, NJ: Pearson.Google Scholar
  11. Creswell, J. (n.d.). How Sage has shaped research methods: A forty year history.Google Scholar
  12. Cumming, G. (2012). Understanding the new statistics. Effect sizes, confidence intervals, and meta-analysis. New York: Taylor & Francis Group.Google Scholar
  13. Denzin, N. K., & Lincoln, Y. S. (2000). Handbook of qualitative research. Thousand Oaks: Sage.Google Scholar
  14. Diamond, J. (2005). Collapse: How societies choose to fail or succeed. New York: Viking Penguin.Google Scholar
  15. Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems 9 (pp. 155–161). Cambridge, MA: MIT Press.Google Scholar
  16. Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304–317. doi: 10.1504/IJTEL.2012.051816.CrossRefGoogle Scholar
  17. Freeman, J. V., Collier, S., Staniforth, D., & Smith, K. J. (2008). Innovations in curriculum design: A multi-disciplinary approach to teaching statistics to undergraduate medical students. BMC Medical Education, 8, 28. doi: 10.1186/1472-6920-8-28.CrossRefGoogle Scholar
  18. Friedman, T. (2005). The world is flat: A brief history of the twenty-first century. New York: Farrar, Straus & Giroux.Google Scholar
  19. Gage, N. L. (1989). The paradigm wars and their aftermath: A “historical” sketch of research on teaching since 1989. Educational Researcher, 18(7), 4–10.Google Scholar
  20. Gibson, D., & Knezek, G. (2011). Game changers for teacher education. In P. Mishra & M. Koehler (Eds.), Proceedings of Society for Information Technology & Teacher Education International Conference 2011 (pp. 929–942). Chesapeake, VA: AACE.Google Scholar
  21. Gibson, D., & Webb, M. (2015). Data science in educational assessment. Education and Information Technologies, 20(4), 697–713.CrossRefGoogle Scholar
  22. Guba, E. G. (1985). The context of emergent paradigm research. In Y. S. Lincoln (Ed.), Organizational theory and inquiry (pp. 79–104). Newbury Park, CA: Sage.Google Scholar
  23. Healey, M. (2005). Linking research and teaching exploring disciplinary spaces and the role of inquiry-based learning. In R. Barnett (Ed.), Reshaping the university: New relationships between research, scholarship and teaching (pp. 30–42). Maidenhead, UK: McGraw-Hill International.Google Scholar
  24. Holland, J. (1995). Hidden order: How adaptation builds complexity. Cambridge, MA: Perseus Books.Google Scholar
  25. Ifenthaler, D. (2015). Learning analytics. In J. M. Spector (Ed.), Encyclopedia of educational technology. Thousand Oaks, CA: Sage.Google Scholar
  26. Ifenthaler, D., Bellin-Mularski, N., & Mah, D.-K. (2015). Internet: Its impact and its potential for learning and instruction. In J. M. Spector (Ed.), Encyclopedia of educational technology. Thousand Oaks, CA: Sage.Google Scholar
  27. Ifenthaler, D., & Gosper, M. (2014). Research-based learning: Connecting research and instruction. In M. Gosper & D. Ifenthaler (Eds.), Curriculum models for the 21st Century. Using learning technologies in higher education (pp. 73–90). New York: Springer.CrossRefGoogle Scholar
  28. Ifenthaler, D., & Widanapathirana, C. (2014). Development and validation of a learning analytics framework: Two case studies using support vector machines. Technology, Knowledge and Learning, 19(1-2), 221–240. doi: 10.1007/s10758-014-9226-4.CrossRefGoogle Scholar
  29. Kachigan, S. K. (1991). Multivariate statistical analysis: A conceptual introduction. New York: Radius Press.Google Scholar
  30. Lincoln, Y. S., Guba, E. G., Lincoln, E., & Guba, Y. (1985). Naturalistic inquiry. Newbury Park, CA: Sage.Google Scholar
  31. Liu, Y.-Y., Slotine, J.-J., & Barabási, A.-L. (2011). Controllability of complex networks. Nature, 473(7346), 167–173. doi: 10.1038/nature10011.CrossRefGoogle Scholar
  32. Long, P. D., & Siemens, G. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 31–40.Google Scholar
  33. Manning, P. K. (1995). The challenges of postmodernism. In J. Van Maanen (Ed.), Representation in ethnography. Thousand Oaks, CA: Sage.Google Scholar
  34. McLaughlin, E. (1991). Oppositional poverty: The quantitative/qualitative divide and other dichotomies. Sociological Review, 39(2), 292–308.CrossRefGoogle Scholar
  35. McNeill, W. (1998). History and the scientific worldview. Hisotry and Theory, 37(1), 1–13.CrossRefGoogle Scholar
  36. Newman, D. V. (1996). Emergence and strange attractors. Philosophy of Science, 63(2), 245–261.CrossRefGoogle Scholar
  37. Onwuegbuzie, A. J., & Leech, N. L. (2005). Taking the “q” out of research: Teaching research methodology courses without the divide between quantitative and qualitative paradigms. Quality and Quantity, 39(3), 267–296. doi: 10.1007/s11135-004-1670-0.CrossRefGoogle Scholar
  38. Prigogine, I. (1996). The end of certainty: Time, chaos, and the new laws of nature.Google Scholar
  39. Putnam, H. (1992). Renewing philosophy. Cambridge, MA: Harvard University Press.Google Scholar
  40. Radzicki, M. J. (2003). Mr. Hamilton, Mr. Forrester, and a Foundation for Evolutionary Economics. Journal of Economic Issues, 37(1), 133–173.CrossRefGoogle Scholar
  41. Rihoux, B., & Grimm, H. (2006). Innovative comparative methods for policy analysis: Beyond the quantitative-qualitative divide. Innovative Comparative Methods for Policy Analysis: Beyond the Quantitative-Qualitative Divide. doi: 10.1007/0-387-28829-5
  42. Rockler, M. J. (1991). Thinking about chaos: Non-quantitative approaches to teacher education. Action in Teacher Education, 12(4), 56–62.CrossRefGoogle Scholar
  43. Romero, C., Ventura, S., Pechenizkiy, M., & Baker, R. S. J. D. (Eds.). (2011). Handbook of educational data mining. Boca Raton, FL: CRC Press.Google Scholar
  44. Shah, S. K., & Corley, K. G. (2006). Building Better Theory by Bridging the Quantitative – Qualitative Divide. Journal of Management Studies, 43(8), 1821–1835. doi: 10.1111/j.1467-6486.2006.00662.x.CrossRefGoogle Scholar
  45. Shum, S. B., & Ferguson, R. (2011). Social learning analytics (pp. 1–26). Knowledge Media Institute & Institute of Educational Technology. doi: 10.1145/2330601.2330616.
  46. Tarrow, S. (2010). Bridging the quantitative-qualitative divide. Rethinking Social Inquiry (pp. 101–110). Retrieved from
  47. Tetenbaum, T. J. (1998). Shifting paradigms: from Newton to chaos. Organizational Dynamics, 26(4), 21–32.CrossRefGoogle Scholar
  48. Wicks, D. (1998). Organizational structures as recursively constructed systems of agency and constraint: compliance and resistance in the context of structural conditions. The Canadian Review of Sociology and Anthropology, 35(3), 369–390.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Curtin UniversityBentleyAustralia

Personalised recommendations