Biogeography-Based Optimization for Dynamic Optimization of Chemical Reactors

  • Sarvesh Nikumbh
  • Shameek Ghosh
  • Valadi K. Jayaraman


Large scale fed-batch operations are industrially important in agricultural and pharmaceutical sectors. In fed-batch operations, we need to optimize the flow rates of rate limiting substrates to maximize the required performance index. Dynamic optimization of the feed rate profiles renders the problem quite complex and requires intelligent techniques. In this context, evolutionary algorithms have proven to be very useful. We introduce the application of a fairly recent nature-inspired evolutionary optimization technique—biogeography-based optimization (BBO), not so widely known as other established evolutionary optimization techniques—for the fed-batch bioreactor-based dynamic optimization problems. We demonstrate with the help of two case studies that BBO can achieve performance indices in close agreement or better than the results in the literature for the considered problems.


Performance Index Dynamic Optimization Emigration Rate Dynamic Optimization Problem Control Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the Centre for Modeling and Simulation, University of Pune, India, and the Centre for Development of Advanced Computing, India, for their support. Also, VKJ gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for financial support.


  1. 1.
    Balsa-Canto, E., Alonso, A.A., Banga, J.R.: Dynamic optimization of bioprocesses: deterministic and stochastic strategies. ACoFoP IV (Automatic Control of Food and Biological Processes), pp. 21–23. Göteborg, Sweden (1998)Google Scholar
  2. 2.
    Balsa-Canto, E., Banga, J.R., Alonso, A.A., Vassiliadis, V.S.: Dynamic optimization of chemical and biochemical processes using restricted second-order information. Comput. Chem. Eng. 25(4–6), 539–546 (2001)CrossRefGoogle Scholar
  3. 3.
    Banga, J.: Optimization in computational systems biology. BMC Syst. Biol. 2, 47 (2008),
  4. 4.
    Banga, J.R., Seider, W.D.: State of the art in global optimization: Computational methods and applications. In: Floudas C.A., Pardalos P. (eds.), Nonconvex Optimization and Its Applications, vol. 7 (1996). ISBN 978-1-4613-3437-8Google Scholar
  5. 5.
    Banga, J.R., Alonso, A.A., Singh, R.P.: Stochastic optimal control of fed-batch bioreactors. American Institute of Chemical Engineers (AIChE) Annual Meeting, San Francisco, 1994Google Scholar
  6. 6.
    Banga, J.R., Alonso, A.A., Singh, R.P.: Stochastic dynamic optimi-zation of batch and semi-continuous bioprocesses. Biotech. Prog. 13, 326–335 (1997)CrossRefGoogle Scholar
  7. 7.
    Banga, J.R., IrizarryRivera, R., Seider, W.D.: Stochastic optimiza-tion for optimal and model-predictive control. Comput. Chem. Eng. 22, 603–612 (1998)CrossRefGoogle Scholar
  8. 8.
    Banga, J.R., Alonso, A.A., Moles, C.G., Balsa-Canto, E.: Efficient and robust numerical strategies for the optimal control of non-linear bio-processes. Mediterranean Conference on Control and Automation (MED2002), Lisbon, Portugal, 9–12 (2002)Google Scholar
  9. 9.
    Banga, J., Balsa-Canto, E., Moles, E., Alonso, A.: Dynamic optimization of bioprocesses: efficient and robust numerical strategies. J. Biotechnol. 117, 407–419 (2005)CrossRefGoogle Scholar
  10. 10.
    Carrasco, E.F., Banga, J.R.: Dynamic optimization of batch reactors using adaptive stochastic algorithms. Ind. Eng. Chem. Res. 36(6), 2252–2261 (1997)CrossRefGoogle Scholar
  11. 11.
    Chen, C.T., Hwang, C.: Optimal control computation for differential-algebraic process systems with general constraints. Chem. Eng. Commun. 97, 9–26 (1990)Google Scholar
  12. 12.
    Chen, C.T., Hwang, C.: Optimal on-off control for fed-batch fermentation processes. Ind. Eng. Chem. Res. 29, 1869–1875 (1990)CrossRefGoogle Scholar
  13. 13.
    Chen, L.Z., Nguang, S.K., Chen, X.D.: Online identification and optimization of feed rate profiles for high productivity fed-batch culture of hybridoma cells using genetic algorithms. In: Proceedings of the American Control Conference 5, 3811–3816, vol. 5, pp. 3811–3816 (2001)Google Scholar
  14. 14.
    Chiou, J.P., Wang, F.S.: Hybrid method of evolution algorithms for static and dynamic optimization problems with application to a fedbatch fermentation process. Comput. Chem. Eng. 23, 1277–1291 (1999)CrossRefGoogle Scholar
  15. 15.
    Gujarathi, A.M., Babu, B.V.: Multi-objective optimization of industrial processes using elitist multi-objective differential evolution. Mater. Manuf. Process. 26(3), 455–463 (2011)CrossRefGoogle Scholar
  16. 16.
    Guo, W., Lei, W., Qidi, W.: An analysis of the migration rates for biogeography-based optimization. Inf. Sci. 254(1), 111–140 (2014), ISSN 0020-0255,
  17. 17.
    Jayaraman, V.K., Kulkarni, B.D., Gupta, K., Rajesh, J., Kusumaker, H.S.: Dynamic optimization of fed-batch bioreactors using the ant algorithm. Biotechnol. Prog. 17, 81–88 (2001)CrossRefGoogle Scholar
  18. 18.
    Lee, J., Ramirez, W.F.: Optimal fed-batch control of induced foreign protein production by recombinant bacteria. AIChE J. 40(5), 899–907 (1994)CrossRefGoogle Scholar
  19. 19.
    Lim, H.C., Tayeb, Y.J., Modak, J.M., Bonte, P.: Computational algorithms for optimal feed rates for a class of fed-batch fermentation: Numerical results for penicillin and cell mass production. Biotechnol. Bioeng. 28, 1408–1420 (1986)CrossRefGoogle Scholar
  20. 20.
    Lopez Cruz, I.L., van Willigenburg, L.G., van Straten, G.: Evolutionary algorithms for optimal control of chemical processes. In: Proceedings of (IASTED) International Conference on Control Applications (2000)Google Scholar
  21. 21.
    Lozovyy, P., Thomas, G., Simon, D.: Biogeography-based optimization for robot controller tuning, in: Igelnik, K. (ed.) Comput. Model. Simulation Intellect, Current State and Future Perspectives, IGI Global, 162–181 (2011)Google Scholar
  22. 22.
    Luss, R.: Application of dynamic programming to differential algebraic process systems. Comput. Chem. Eng. 17, 373–377 (1993)CrossRefGoogle Scholar
  23. 23.
    Luus, R.: IEEE Trans. Autom. Control 37(11), 1802–1806 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Luus, R.: Sensitivity of a control policy on yield of a fed-batch reactor. In: (IASTED) International Conference on Modelling and Simulation, Pittsburg (1995)Google Scholar
  25. 25.
    Matsuura, K., Shiba, H., Nunokawa, Y., Shimizu, S.K., Kaishi, H.: Calculation of optimal trajectories for fermentation processes by genetic algorithm. J. Soc. Ferm. Bioeng. 71,171–178 (1993)Google Scholar
  26. 26.
    Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998)CrossRefGoogle Scholar
  27. 27.
    Mo, H., Xu, L.: Biogeography based optimization for traveling salesman problem. In: Sixth International Conference on Natural Computation (ICNC), vol. 6, pp. 3141–3147 (2010). doi:10.1109/ICNC.2010.5584489Google Scholar
  28. 28.
    Na, J.G., Chang, Y.K., Chung, B.H., Lim, H.C.: Adaptive optimization of fed-batch culture of yeast by using genetic algorithms. Bioproc. Biosyst. Eng. 24, 299–308 (2002)CrossRefGoogle Scholar
  29. 29.
    Nguang, S.K., Chen, L., Chen, X.D.: Optimisation of fed-batch culture of hybridoma cells using genetic algorithm. ISA Trans. 40, 381–389 (2001)CrossRefGoogle Scholar
  30. 30.
    Nikumbh, S.: Bbo: Biogeography-Based Optimization, R package for continuous BBO, developed and maintained by Sarvesh Nikumbh. Available online at [] (2013)
  31. 31.
    Nikumbh, S., Ghosh, S., Jayaraman, V.K.: Biogeography-based informative gene selection and cancer classification using svm and random forests. In: Proceedings of the IEEE World Congress on Computational Intelligence (IEEE WCCI), pp. 187–192 (2012)Google Scholar
  32. 32.
    Ovreiu, M., Simon, D.: Biogeography-based optimization of neuro-fuzzy system parameters for diagnosis of cardiac disease. In: Proceedings of Genetic and Evolutionary Computation Conference, vol. 12, pp. 135–1242 (2010)Google Scholar
  33. 33.
    Panchal, V.K., Singh, P., Kaur, N., Kundra, H.: Biogeography based satellite image classification. Int. J. Comput. Sci. Inf. Secur. 6, 269–274 (2009)Google Scholar
  34. 34.
    Park, S., Ramirez, W.F.: Optimal production of secreted protein in fed-batch reactors. AIChE J. 34(9), 1550 (1988)CrossRefGoogle Scholar
  35. 35.
    Ronen, M., Shabtai, Y., Guterman, H.: Optimization of feeding profile for a fed-batch bioreactor by an evolutionary algorithm. J. Biotechnol. 97, 253–263 (2002)CrossRefGoogle Scholar
  36. 36.
    Roubos, J.A., van Straten, G., van Boxtel, A.: Numerical computational method using genetic algorithm for the optimal control problem with terminal constraints and free parameters. J. Biotechnol. 67, 173–187 (1999)CrossRefGoogle Scholar
  37. 37.
    Sarkar, D., Modak, J.M.: Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables. Comput. Chem. Eng. 28(5), 789–798 (2004)CrossRefGoogle Scholar
  38. 38.
    Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: Multicanonical jump walk annealing assisted by tabu for dynamic optimization of chemical engineering processes. Eur. J. Oper. Res. 185(3), 1213–1229 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12, 702–713 (2008). (doi:10.1109/TEVC.2008.919004)CrossRefGoogle Scholar
  40. 40.
    Simon, D., Rarick, R., Ergezer, M., Du, D.: Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms. Inf. Sci. 181(7), 1224–1248 (2011)CrossRefzbMATHGoogle Scholar
  41. 41.
    Song, Y., Liu, M., Wang, Z.: Biogeography-based optimization for the traveling salesman problems. 2010 Third Int. Joint Conf. Comput. Sci. Optim. (CSO) 1, 295–299 (2010). doi:10.1109/CSO.2010.79Google Scholar
  42. 42.
    Tholudur, A., Ramirez, W.F.: Optimization of fed-batch bioreactors using neural network parameter function models. Biotech. Prog. 12, 302–309 (1996)CrossRefGoogle Scholar
  43. 43.
    Tholudur, A., Ramirez, W.F.: Obtaining smoother singular arc policies using a modified iterative dynamic programming algorithm. Int. J. Control 68(5), 1115–1128 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Tholudur, A., Ramirez, W.F.: Obtaining smoother singular arc policies using a modified iterative dynamic programming algorithm. Int. J. Control 68(5), 1115–1128 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Vassiliadis, V.S.: Computational solution of dynamic optimization problems with general differential-algebraic constraints. PhD thesis, University of London, Imperial College (1993)Google Scholar
  46. 46.
    Wang, F.S., Sheu, J.W.: Multiobjective parameter estimation problems of ferementation processes using a high ethanol tolerance yeast. Chem. Eng. Sci. 55, 3685–3695 (2000)CrossRefGoogle Scholar
  47. 47.
    Yang, R.L., Wu, C.P.: Global optimal control by accelerated simu-lated annealing. In: First Asian Control Confence, Tokyo (1994)Google Scholar
  48. 48.
    Zuo, K., Wu, W.T.: Semi-realtime optimization and control of a fed-batch fermentation system. Comput. Chem. Eng. 24, 1105–1109 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Computational Biology and Applied AlgorithmicsMax Planck Institut für InformatikSaarbrückenGermany
  2. 2.Advanced Analytics Institute (AAI)University of TechnologySydneyAustralia
  3. 3.Evolutionary Computing and Image Processing (ECIP)Center for Development of Advanced Computing (C-DAC)PuneIndia
  4. 4.Shiv Nadar UniversityDistrict Gautam Buddha NagarIndia

Personalised recommendations