Biogeography-Based Optimization for Dynamic Optimization of Chemical Reactors
Abstract
Large scale fed-batch operations are industrially important in agricultural and pharmaceutical sectors. In fed-batch operations, we need to optimize the flow rates of rate limiting substrates to maximize the required performance index. Dynamic optimization of the feed rate profiles renders the problem quite complex and requires intelligent techniques. In this context, evolutionary algorithms have proven to be very useful. We introduce the application of a fairly recent nature-inspired evolutionary optimization technique—biogeography-based optimization (BBO), not so widely known as other established evolutionary optimization techniques—for the fed-batch bioreactor-based dynamic optimization problems. We demonstrate with the help of two case studies that BBO can achieve performance indices in close agreement or better than the results in the literature for the considered problems.
Keywords
Performance Index Dynamic Optimization Emigration Rate Dynamic Optimization Problem Control ProfileNotes
Acknowledgments
The authors acknowledge the Centre for Modeling and Simulation, University of Pune, India, and the Centre for Development of Advanced Computing, India, for their support. Also, VKJ gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for financial support.
References
- 1.Balsa-Canto, E., Alonso, A.A., Banga, J.R.: Dynamic optimization of bioprocesses: deterministic and stochastic strategies. ACoFoP IV (Automatic Control of Food and Biological Processes), pp. 21–23. Göteborg, Sweden (1998)Google Scholar
- 2.Balsa-Canto, E., Banga, J.R., Alonso, A.A., Vassiliadis, V.S.: Dynamic optimization of chemical and biochemical processes using restricted second-order information. Comput. Chem. Eng. 25(4–6), 539–546 (2001)CrossRefGoogle Scholar
- 3.Banga, J.: Optimization in computational systems biology. BMC Syst. Biol. 2, 47 (2008), http://www.biomedcentral.com/1752-0509/2/47
- 4.Banga, J.R., Seider, W.D.: State of the art in global optimization: Computational methods and applications. In: Floudas C.A., Pardalos P. (eds.), Nonconvex Optimization and Its Applications, vol. 7 (1996). ISBN 978-1-4613-3437-8Google Scholar
- 5.Banga, J.R., Alonso, A.A., Singh, R.P.: Stochastic optimal control of fed-batch bioreactors. American Institute of Chemical Engineers (AIChE) Annual Meeting, San Francisco, 1994Google Scholar
- 6.Banga, J.R., Alonso, A.A., Singh, R.P.: Stochastic dynamic optimi-zation of batch and semi-continuous bioprocesses. Biotech. Prog. 13, 326–335 (1997)CrossRefGoogle Scholar
- 7.Banga, J.R., IrizarryRivera, R., Seider, W.D.: Stochastic optimiza-tion for optimal and model-predictive control. Comput. Chem. Eng. 22, 603–612 (1998)CrossRefGoogle Scholar
- 8.Banga, J.R., Alonso, A.A., Moles, C.G., Balsa-Canto, E.: Efficient and robust numerical strategies for the optimal control of non-linear bio-processes. Mediterranean Conference on Control and Automation (MED2002), Lisbon, Portugal, 9–12 (2002)Google Scholar
- 9.Banga, J., Balsa-Canto, E., Moles, E., Alonso, A.: Dynamic optimization of bioprocesses: efficient and robust numerical strategies. J. Biotechnol. 117, 407–419 (2005)CrossRefGoogle Scholar
- 10.Carrasco, E.F., Banga, J.R.: Dynamic optimization of batch reactors using adaptive stochastic algorithms. Ind. Eng. Chem. Res. 36(6), 2252–2261 (1997)CrossRefGoogle Scholar
- 11.Chen, C.T., Hwang, C.: Optimal control computation for differential-algebraic process systems with general constraints. Chem. Eng. Commun. 97, 9–26 (1990)Google Scholar
- 12.Chen, C.T., Hwang, C.: Optimal on-off control for fed-batch fermentation processes. Ind. Eng. Chem. Res. 29, 1869–1875 (1990)CrossRefGoogle Scholar
- 13.Chen, L.Z., Nguang, S.K., Chen, X.D.: Online identification and optimization of feed rate profiles for high productivity fed-batch culture of hybridoma cells using genetic algorithms. In: Proceedings of the American Control Conference 5, 3811–3816, vol. 5, pp. 3811–3816 (2001)Google Scholar
- 14.Chiou, J.P., Wang, F.S.: Hybrid method of evolution algorithms for static and dynamic optimization problems with application to a fedbatch fermentation process. Comput. Chem. Eng. 23, 1277–1291 (1999)CrossRefGoogle Scholar
- 15.Gujarathi, A.M., Babu, B.V.: Multi-objective optimization of industrial processes using elitist multi-objective differential evolution. Mater. Manuf. Process. 26(3), 455–463 (2011)CrossRefGoogle Scholar
- 16.Guo, W., Lei, W., Qidi, W.: An analysis of the migration rates for biogeography-based optimization. Inf. Sci. 254(1), 111–140 (2014), ISSN 0020-0255, http://dx.doi.org/10.1016/j.ins.2013.07.018
- 17.Jayaraman, V.K., Kulkarni, B.D., Gupta, K., Rajesh, J., Kusumaker, H.S.: Dynamic optimization of fed-batch bioreactors using the ant algorithm. Biotechnol. Prog. 17, 81–88 (2001)CrossRefGoogle Scholar
- 18.Lee, J., Ramirez, W.F.: Optimal fed-batch control of induced foreign protein production by recombinant bacteria. AIChE J. 40(5), 899–907 (1994)CrossRefGoogle Scholar
- 19.Lim, H.C., Tayeb, Y.J., Modak, J.M., Bonte, P.: Computational algorithms for optimal feed rates for a class of fed-batch fermentation: Numerical results for penicillin and cell mass production. Biotechnol. Bioeng. 28, 1408–1420 (1986)CrossRefGoogle Scholar
- 20.Lopez Cruz, I.L., van Willigenburg, L.G., van Straten, G.: Evolutionary algorithms for optimal control of chemical processes. In: Proceedings of (IASTED) International Conference on Control Applications (2000)Google Scholar
- 21.Lozovyy, P., Thomas, G., Simon, D.: Biogeography-based optimization for robot controller tuning, in: Igelnik, K. (ed.) Comput. Model. Simulation Intellect, Current State and Future Perspectives, IGI Global, 162–181 (2011)Google Scholar
- 22.Luss, R.: Application of dynamic programming to differential algebraic process systems. Comput. Chem. Eng. 17, 373–377 (1993)CrossRefGoogle Scholar
- 23.Luus, R.: IEEE Trans. Autom. Control 37(11), 1802–1806 (1992)CrossRefMATHMathSciNetGoogle Scholar
- 24.Luus, R.: Sensitivity of a control policy on yield of a fed-batch reactor. In: (IASTED) International Conference on Modelling and Simulation, Pittsburg (1995)Google Scholar
- 25.Matsuura, K., Shiba, H., Nunokawa, Y., Shimizu, S.K., Kaishi, H.: Calculation of optimal trajectories for fermentation processes by genetic algorithm. J. Soc. Ferm. Bioeng. 71,171–178 (1993)Google Scholar
- 26.Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998)CrossRefGoogle Scholar
- 27.Mo, H., Xu, L.: Biogeography based optimization for traveling salesman problem. In: Sixth International Conference on Natural Computation (ICNC), vol. 6, pp. 3141–3147 (2010). doi:10.1109/ICNC.2010.5584489Google Scholar
- 28.Na, J.G., Chang, Y.K., Chung, B.H., Lim, H.C.: Adaptive optimization of fed-batch culture of yeast by using genetic algorithms. Bioproc. Biosyst. Eng. 24, 299–308 (2002)CrossRefGoogle Scholar
- 29.Nguang, S.K., Chen, L., Chen, X.D.: Optimisation of fed-batch culture of hybridoma cells using genetic algorithm. ISA Trans. 40, 381–389 (2001)CrossRefGoogle Scholar
- 30.Nikumbh, S.: Bbo: Biogeography-Based Optimization, R package for continuous BBO, developed and maintained by Sarvesh Nikumbh. Available online at [http://cran.r-project.org/web/packages/bbo/] (2013)
- 31.Nikumbh, S., Ghosh, S., Jayaraman, V.K.: Biogeography-based informative gene selection and cancer classification using svm and random forests. In: Proceedings of the IEEE World Congress on Computational Intelligence (IEEE WCCI), pp. 187–192 (2012)Google Scholar
- 32.Ovreiu, M., Simon, D.: Biogeography-based optimization of neuro-fuzzy system parameters for diagnosis of cardiac disease. In: Proceedings of Genetic and Evolutionary Computation Conference, vol. 12, pp. 135–1242 (2010)Google Scholar
- 33.Panchal, V.K., Singh, P., Kaur, N., Kundra, H.: Biogeography based satellite image classification. Int. J. Comput. Sci. Inf. Secur. 6, 269–274 (2009)Google Scholar
- 34.Park, S., Ramirez, W.F.: Optimal production of secreted protein in fed-batch reactors. AIChE J. 34(9), 1550 (1988)CrossRefGoogle Scholar
- 35.Ronen, M., Shabtai, Y., Guterman, H.: Optimization of feeding profile for a fed-batch bioreactor by an evolutionary algorithm. J. Biotechnol. 97, 253–263 (2002)CrossRefGoogle Scholar
- 36.Roubos, J.A., van Straten, G., van Boxtel, A.: Numerical computational method using genetic algorithm for the optimal control problem with terminal constraints and free parameters. J. Biotechnol. 67, 173–187 (1999)CrossRefGoogle Scholar
- 37.Sarkar, D., Modak, J.M.: Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables. Comput. Chem. Eng. 28(5), 789–798 (2004)CrossRefGoogle Scholar
- 38.Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: Multicanonical jump walk annealing assisted by tabu for dynamic optimization of chemical engineering processes. Eur. J. Oper. Res. 185(3), 1213–1229 (2008)CrossRefMATHMathSciNetGoogle Scholar
- 39.Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12, 702–713 (2008). (doi:10.1109/TEVC.2008.919004)CrossRefGoogle Scholar
- 40.Simon, D., Rarick, R., Ergezer, M., Du, D.: Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms. Inf. Sci. 181(7), 1224–1248 (2011)CrossRefMATHGoogle Scholar
- 41.Song, Y., Liu, M., Wang, Z.: Biogeography-based optimization for the traveling salesman problems. 2010 Third Int. Joint Conf. Comput. Sci. Optim. (CSO) 1, 295–299 (2010). doi:10.1109/CSO.2010.79Google Scholar
- 42.Tholudur, A., Ramirez, W.F.: Optimization of fed-batch bioreactors using neural network parameter function models. Biotech. Prog. 12, 302–309 (1996)CrossRefGoogle Scholar
- 43.Tholudur, A., Ramirez, W.F.: Obtaining smoother singular arc policies using a modified iterative dynamic programming algorithm. Int. J. Control 68(5), 1115–1128 (1997)CrossRefMATHMathSciNetGoogle Scholar
- 44.Tholudur, A., Ramirez, W.F.: Obtaining smoother singular arc policies using a modified iterative dynamic programming algorithm. Int. J. Control 68(5), 1115–1128 (1997)CrossRefMATHMathSciNetGoogle Scholar
- 45.Vassiliadis, V.S.: Computational solution of dynamic optimization problems with general differential-algebraic constraints. PhD thesis, University of London, Imperial College (1993)Google Scholar
- 46.Wang, F.S., Sheu, J.W.: Multiobjective parameter estimation problems of ferementation processes using a high ethanol tolerance yeast. Chem. Eng. Sci. 55, 3685–3695 (2000)CrossRefGoogle Scholar
- 47.Yang, R.L., Wu, C.P.: Global optimal control by accelerated simu-lated annealing. In: First Asian Control Confence, Tokyo (1994)Google Scholar
- 48.Zuo, K., Wu, W.T.: Semi-realtime optimization and control of a fed-batch fermentation system. Comput. Chem. Eng. 24, 1105–1109 (2000)CrossRefGoogle Scholar