Skip to main content

User Interaction

  • Chapter
  • First Online:
  • 369 Accesses

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

The previous chapter proposes a user model to personalize existing interfaces. However, we can think beyond personalization to facilitate human–machine interaction. The survey in Chap. 1 pointed out that a few elderly users found it difficult to operate a mouse or found the buttons on a TV remote too small to touch. This chapter proposes new interaction modalities involving eye-gaze and head movement trackers .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adjouadi, M., Sesin, A., Ayala, M., & Cabrerizo, M. (2004). Remote eye gaze tracking system as a computer interface for persons with severe motor disability. ICCHP 2004, LNCS, 3118, 761–769.

    Google Scholar 

  2. Allison, R. S., Eizenman, M., & Cheung, B. S. K. (1996). Combined head and eye tracking system for dynamic testing of the vestibular system. IEEE Transaction on Biomedical Engineering, 43(11).

    Google Scholar 

  3. Asano, T., Sharlin, E., Kitamura, Y., Takashima, K., & Kishino, F. (2005). Predictive interaction using the delphian desktop. Proceedings of the 186th annual ACM smposium on User Interface Software and Technology (UIST 2005) (pp. 133–141), New York.

    Google Scholar 

  4. Ashdown, M., Oka, K., & Sato, Y. (2005). Combining head tracking and mouse input for a GUI on multiple monitors. CHI Late breaking Result.

    Google Scholar 

  5. Bates, R. (1999). Multimodal eye-based interaction for zoomed target selection on a standard graphical user interface. INTERACT.

    Google Scholar 

  6. Biswas, P., & Robinson, P. (2009). Modelling perception using image processing algorithms. 23rd British computer society conference on Human-Computer Interaction (HCI 2009)

    Google Scholar 

  7. Biswas, P., & Langdon, P. (June 2011). A new input system for disabled users involving eye gaze tracker and scanning interface. Journal of Assistive Technologies, 5(2). ISSN:1754-9450

    Google Scholar 

  8. Biswas, P., & Langdon, P. (2012). Developing multimodal adaptation algorithm for mobility impaired users by evaluating their hand strength. International Journal of Human-Computer Interaction, 28(9). (Taylor & Francis, Print ISSN:1044-7318).

    Google Scholar 

  9. CameraMouse. (2013). http://www.cameramouse.com. Accessed 22 Sep 2013.

  10. Dixon, M., Fogarty, J., & Wobbrock, J. (2012). A general-purpose target-aware pointing enhancement using pixel-level analysis of graphical interfaces. Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems (CHI 2012) (pp. 3167–3176). New York: ACM.

    Google Scholar 

  11. Donegan, M., et al. (2009). Understanding users and their needs. Universal Access in the Information Society, 8, 259–275.

    Google Scholar 

  12. Dostal, J., Kristensson, P. O., & Quigley, A. (2013). Subtle gaze-dependent techniques for visualising display changes in multi-display environments. ACM international conference of Intelligent User Interfaces (IUI 2013).

    Google Scholar 

  13. Duchowski, A. T. (2007). Eye tracking methodology. New York: Springer.

    Google Scholar 

  14. Emotiv Epoch (2013). http://www.emotiv.com/. Accessed 31 Aug 2013.

  15. Evans, A. C., & Wobbrock, J. O. (5–10 May 2012). Taming wild behavior: The input observer for obtaining text entry and mouse pointing measures from everyday computer use. Proceedings of the ACM conference on Human Factors in Computing Systems (CHI ’12). Austin, Texas (pp. 1947–1956). New York: ACM.

    Google Scholar 

  16. Facelab Eye Tracker (2013). http://www.seeingmachines.com/product/facelab/. Accessed 29 April 2013.

  17. Fejtova, M., et al. (2009). Hands-free interaction with a computer and other technologies. Universal Access in the Information Society, 8.

    Google Scholar 

  18. Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381–391.

    Article  Google Scholar 

  19. Fu, Y., & Huang, T. S. (2007). hMouse: Head tracking driven virtual computer mouse. IEEE workshop on applications of computer vision.

    Google Scholar 

  20. Godsill, S., & Vermaak, J. (2004). Models and algorithms for tracking using variable dimension particle filters. International conference on acoustics, speech and signal processing.

    Google Scholar 

  21. Huey, E. (1908). The psychology and pedagogy of reading. Cambridge: MIT Press.

    Google Scholar 

  22. Hwang, F., Hollinworth, N., & Williams, N. (2013). ACM Transactions on Accessible Computing (TACCESS) 5(1).

    Google Scholar 

  23. Hwang, F., Keates, S., Langdon, P., & Clarkson, P. J. (2005). A submovement analysis of cursor trajectories. Behaviour and Information Technology, 24(3), 205–217.

    Article  Google Scholar 

  24. Jacob, R. (1993). Eye movement-based human-computer interaction techniques: Toward non-command interfaces. Advances in Human-Computer Interaction.

    Google Scholar 

  25. Jagacinski, R. J., & Monk, D. L. (1985). Fitts’ Law in two dimensions with hand and head movements. Journal of Motor Behaviour, 17(1), 77–95.

    Article  Google Scholar 

  26. Keates, S., Hwang, F., Langdon, P., Clarkson, P. J., & Robinson, P. (2002). Cursor measures for motion-impaired computer users. Proceedings of the fifth international ACM conference on Assistive Technologies—ASSETS (pp. 135–142). New York

    Google Scholar 

  27. Lane, D. M., Peres, S. C., Sándor, A., & Napier, H. A. (2005). A process for anticipating and executing icon selection in graphical user interfaces. International Journal of Human Computer Interaction, 19(2), 243–254.

    Article  Google Scholar 

  28. Langdon, P. M., Godsill, S., & Clarkson, P. J. (2006). Statistical estimation of user’s interactions from motion impaired cursor use data. 6th International Conference on Disability, Virtual Reality and Associated Technologies (ICDVRAT 2006), Esbjerg.

    Google Scholar 

  29. Lank, E., Cheng, Y. N., & Ruiz, J. (2007). Endpoint prediction using motion kinematics. Proceedings of the SIGCHI conference on Human factors in computing systems (CHI ’07) (pp. 637–646). New York.

    Google Scholar 

  30. Lee, D., Kwon, S., & Chung, M. K. (2012). Effects of user age and target-expansion methods on target-acquisition tasks using a mouse. Applied Ergonomics, 43(1), 166–175.

    Article  Google Scholar 

  31. Li, X. R., & Jilkov, V. P. (2003). Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1333–1364.

    Article  Google Scholar 

  32. MacKenzie, I. S., Sellen, A., & Buxton, W. (1991). A comparison of input devices in elemental pointing and dragging tasks. Proceedings of the CHI ’91 conference on Human factors in computing systems (pp. 161–166). New York: ACM.

    Google Scholar 

  33. Majaranta, P., & Raiha, K. (2002) Twenty years of eye typing: Systems and design issues. Eye tracking research & application.

    Google Scholar 

  34. McGuffin, M. J., & Balakrishnan, R. (2005). Fitts’ law and expanding targets: Experimental studies and designs for user interfaces. ACM Transactions Computer-Human Interaction, 12(4), 388–422.

    Article  Google Scholar 

  35. Miniotas, D. (2001). Application of Fitts’ Law to eye gaze interaction. Proceedings of the ACM SIGCHI conference on Human factors in computing systems (CHI) (pp. 339–340).

    Google Scholar 

  36. Murata, A. (1998). Improvement of pointing time by predicting targets in pointing with a PC mouse. International Journal of Human-Computer Interaction, 10(1), 23–32.

    Article  Google Scholar 

  37. Oirschot, H., & Houtsma, A. J. M. (2001) Cursor trajectory analysis. In S. Brewster & R. Murray-Smith (Eds.), Haptic Human-Computer Interaction (LNCS Vol. 2058, pp. 127–134). Springer: Berlin.

    Chapter  Google Scholar 

  38. Ruiz, J., & Lank, E. (2010). Speeding pointing in tiled widgets: Understanding the effects of target expansion and misprediction. Proceedings of the 15th international conference on Intelligent User Interfaces (IUI’10) (pp. 229–238). New York: ACM.

    Google Scholar 

  39. Salomon, D. (Aug. 2005). Curves and surfaces for computer graphics (ISBN:0-387-24196-24195). New York: Springer.

    Google Scholar 

  40. Tobii X120 Eye Tracker. (2013). http://www.tobii.com/en/eye-tracking-research/global/products/hardware/tobii-x60x120-eye-tracker/. Accessed 31 Aug 2013.

  41. Vertegaal, R. (2008). A Fitts’ Law comparison of eye tracking and manual input in the selection of visual targets. Proceedings of the international conference of multimodal interaction (pp. 241–248).

    Google Scholar 

  42. Ward, D. (2010). Dasher with an eye-tracker. http://www.inference.phy.cam.ac.uk/djw30/dasher/eye.html. Accessed 19 Aug 2010.

  43. Ware, C., & Mikaelian, H. M. (1987). An evaluation of an eye tracker as a device for computer input. Proceedings of the ACM SIGCHI conference on Human factors in computing systems (CHI) (pp. 183–187).

    Google Scholar 

  44. Wobbrock, J. O., Fogarty, J., Liu, S., Kimuro, S., & Harada, S. (2009). The angle mouse: Target-agnostic dynamic gain adjustment based on angular deviation. Proceedings of the 27th international conference on Human factors in computing systems (CHI ’09) (pp. 1401–1410). New York.

    Google Scholar 

  45. Woodworth, R. S. (1899). The accuracy of voluntary movement. Psychological Review, 3, 1–119.

    Google Scholar 

  46. Zandera, T. O., Gaertnera, M., Kothea, C., & Vilimek, R. (2010). Combining eye gaze input with a brain-computer interface for touchless human-computer interaction. International Journal of Human-Computer Interaction, 27(1).

    Google Scholar 

  47. Zhai, S., Morimoto, C., & Ihde, S. (1999). Manual and Gaze Input Cascaded (MAGIC) Pointing. ACM SIGCHI conference on Human factors in computing system (CHI).

    Google Scholar 

  48. Zhang, Y., Bulling, A., & Gellersen, H. (2013). SideWays: A gaze interface for spontaneous interaction with situated displays. CHI 2013.

    Google Scholar 

  49. Ziebart, B., Dey, A., & Bagnell, J. A. (2012). Probabilistic pointing target prediction via inverse optimal control. Proceedings of the 2012 ACM international conference on Intelligent User Interfaces (IUI ’12) (pp. 1–10). New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Biswas .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Biswas, P. (2014). User Interaction. In: Inclusive Human Machine Interaction for India. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-06500-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06500-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06165-8

  • Online ISBN: 978-3-319-06500-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics