Skip to main content

Ensemble of Multiple Kernel SVM Classifiers

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8436))

Included in the following conference series:

Abstract

Multiple kernel learning (MKL) allows the practitioner to optimize over linear combinations of kernels and shows good performance in many applications. However, many MKL algorithms require very high computational costs in real world applications. In this study, we present a framework which uses multiple kernel SVM classifiers as the base learners for stacked generalization, a general method of using a high-level model to combine lower-level models, to achieve greater computational efficiency. The experimental results show that our MKL-based stacked generalization algorithm combines advantages from both MKL and stacked generalization. Compared to other general ensemble methods tested in this paper, this method achieves greater performance on predictive accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wolpert, D.H.: Stacked Generalization. Neural Networks 5, 241–259 (1992)

    Article  Google Scholar 

  2. Kai, M.T., Ian Witten, H.: Issues in Stacked Generalization. Journal of Artificial Intelligence Research 10, 271–289 (1999)

    Google Scholar 

  3. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21st International Conference on Machine Learning (2004)

    Google Scholar 

  4. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (1999)

    Google Scholar 

  5. Scholkopf, B., Smola, A., Muller, K.: Kernel principal component analysis. Advances in Kernel Methods: Support Vector Learning, 327–352 (1999)

    Google Scholar 

  6. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)

    Google Scholar 

  7. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2010), http://archive.ics.uci.edu/ml

    Google Scholar 

  8. Gehler, P.V., Nowozin, S.: Infinite kernel learning. Technical report, Max Planck Institute for Biological Cybernetics (2008)

    Google Scholar 

  9. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.: Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research 5, 27–72 (2004)

    MATH  Google Scholar 

  10. Bach, F., Lanckriet, G., Jordan, M.: Multiple kernel learning, conic duality, and the smo algorithm. In: Proceedings of the 21st International Conference on Machine Learning, pp. 41–48 (2004)

    Google Scholar 

  11. Sonnenburg, S., Raetsch, G., Schaefer, C., Scholkopf, B.: Large scale multiple kernel learning. Journal of Machine Learning Research 7, 1531–1565 (2006)

    MATH  Google Scholar 

  12. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  13. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  14. Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

  15. Wolpert, D.H., Macready, W.G.: Combining stacking with bagging to improve a learning algorithm. Technical Report SFI-TR-96-03-123, Santa Fe Institute, Santa Fe, New Mexico (1996)

    Google Scholar 

  16. Kai, M.T., Witten, H.I.: Stacking Bagged and Dagged Models. In: ICML, pp. 367–375 (1997)

    Google Scholar 

  17. Valentini, G., Dietterich, T.G.: Bias-Variance Analysis of Support Vector Machines for the Development of SVM-Based Ensemble Methods. Journal of Machine Learning Research 5, 725–775 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Kim, H.C., Pang, S., Je, H.M., Kim, D., Bang, S.Y.: Pattern Classification Using Support Vector Machine Ensemble. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 20160–20163. IEEE (2002)

    Google Scholar 

  19. Valentini, G., Dietterich, T.G.: Low Bias Bagged Support Vector Machines. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the Twentieth International Conference, Machine Learning, pp. 752–759. AAAI Press, Washington (2003)

    Google Scholar 

  20. Evgeniou, T., Perez-Breva, L., Pontil, M., Poggio, T.: Bounds on the Generalization Performance of Kernel Machine Ensembles. In: Langley, P. (ed.) Proc. of the Seventeenth International Conference on Machine Learning, pp. 271–278. Morgan Kaufmann (2000)

    Google Scholar 

  21. Friedman, J.H., Hastie, T., Tibshirani, R.J.: Additive logistic regression: a statistical view of boosting. Technical report, Stanford University, Department of Statistics (1998)

    Google Scholar 

  22. Cortes, C., Mohri, M., Rostamizadeh, A.: L2 regularization for learning kernels. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (2009)

    Google Scholar 

  23. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press (2011)

    Google Scholar 

  24. Joachims, T., Cristianini, N., Shawe-Taylor, J.: Composite kernels for hypertext categorisation. In: Proceedings of the 18th International Conference on Machine Learning (2001)

    Google Scholar 

  25. Alham, N.K., Li, M., Liu, Y.: A distributed SVM ensemble for image: Classification and annotation. In: Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 1581–1584. IEEE, Piscataway (2012)

    Google Scholar 

  26. Chang, E.Y., Zhu, K., Wang, H.: PSVM: Parallelizing support vector machines on distributed computers. Adv. Neural Inf. Process Syst. 20, 1–8 (2007)

    Google Scholar 

  27. Chen, Z.Y., Fan, Z.P.: Parallel multiple kernel learning: A hybrid alternating direction method of multipliers. Knowledge and Information Systems (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, X., Liu, X., Japkowicz, N., Matwin, S. (2014). Ensemble of Multiple Kernel SVM Classifiers. In: Sokolova, M., van Beek, P. (eds) Advances in Artificial Intelligence. Canadian AI 2014. Lecture Notes in Computer Science(), vol 8436. Springer, Cham. https://doi.org/10.1007/978-3-319-06483-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06483-3_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06482-6

  • Online ISBN: 978-3-319-06483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics