Skip to main content

First-Order Linear Difference Equations

  • Chapter
  • First Online:
Regularity of Difference Equations on Banach Spaces

Abstract

In this chapter we present the maximal discrete regularity approach to first-order linear difference equations in general Banach spaces. In the first section we introduce the general frame for first-order linear difference equations. The entire linear theory of maximal regularity is not only important on its own, but it is also the indispensable basis for the theory of nonlinear difference equations, which we present in the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If (3.1.1) has discrete maximal l p -regularity, then T is analytic. In fact, put \(M:=\sup _{n}\vert \vert T^{n}\vert \vert \), we consider for all \(b \in \mathbb{N}\) and x ∈ X the sequence \(f \in l_{p}(\mathbb{Z}_{+},X)\) defined by f j  = T j x for j = 1, , b and f j  = 0 otherwise. We have the following estimates:

    $$\displaystyle\begin{array}{rcl} \vert \vert (T - I)T^{b}x\vert \vert _{ X}& \leq &\vert \vert T^{b-n}(T - I)T^{n}x\vert \vert _{ X} \leq \vert \vert T^{b-n}\vert \vert \|(T - I)T^{n}x\vert \vert _{ X} \leq M\|(T - I)T^{n}x\vert \vert _{ X}, {}\\ \vert \vert K_{T}f\vert \vert _{p}& \leq &\|K_{T}\vert \vert _{\mathcal{B}(l_{p}(\mathbb{Z}_{+};X))}\vert \vert f\vert \vert _{p} \leq \vert \vert K_{T}\vert \vert _{\mathcal{B}(l_{p}(\mathbb{Z}_{+};X))}Mb^{1/p}\vert \vert x\vert \vert _{ X}. {}\\ \end{array}$$

    Using the first one, we get

    $$\displaystyle\begin{array}{rcl} \vert \vert K_{T}f\vert \vert _{p}& \geq &\Big(\sum _{n=1}^{b}\vert \vert (K_{ T}f)_{n}\vert \vert _{X}^{p}\Big)^{1/p} =\Big (\sum _{ n=1}^{b}n^{p}\|(T - I)T^{n}x\vert \vert _{ X}^{p}\Big)^{1/p} {}\\ & \geq & M^{-1}\Big(\sum _{ n=1}^{b}n^{p}\Big)^{1/p}\vert \vert (T - I)T^{b}x\vert \vert _{ X} \geq (2M)^{-1}b^{1+1/p}\vert \vert (T - I)T^{b}x\vert \vert _{ X}. {}\\ \end{array}$$

    Therefore \(\vert \vert b(T - I)T^{b}x\vert \vert _{X} \leq 2M^{2}\|K_{T}\vert \vert _{\mathcal{B}(l_{p}(\mathbb{Z}_{+};X))}\vert \vert x\vert \vert _{X}.\)

  2. 2.

    The subpositivity of a contraction T on Lp is defined by the existence of a dominating positive contraction S, i.e., \(\vert Tf\vert \leq S\vert f\vert \) for all f ∈ Lp.

References

  1. H. Amann, Maximal regularity for nonautonomous evolution equations. Adv. Nonlinear Stud. 4(4), 417–430 (2004)

    MATH  MathSciNet  Google Scholar 

  2. A. Ashyralyev, C. Cuevas, S. Piskarev, On well-posedness of difference schemes for abstract elliptic problems in L p([0, T]; E) spaces. Numer. Funct. Anal. Optim. 29(1–2), 43–65 (2008)

    Google Scholar 

  3. A. Ashyralyev, S. Piskarev, L. Weis, On well-posedness of difference schemes for abstract parabolic equations in L p([0, T]; E) spaces. Numer. Funct. Anal. Optim. 23(7–8), 669–693 (2002)

    Google Scholar 

  4. J.B. Baillon, Caractère borné de certains générateurs de semigroupes linéaires dans les espaces de Banach. C. R. Acad. Sci. Paris Série A 290, 757–760 (1980)

    MATH  MathSciNet  Google Scholar 

  5. S. Blunck, Maximal regularity of discrete and continuous time evolution equations. Studia Math. 146(2), 157–176 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Blunck, Analyticity and discrete maximal regularity of L p -spaces. J. Funct. Anal. 183(1), 211–230 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Castro, C. Cuevas, Perturbation theory, stability, boundedness and asymptotic behavior for second order evolution equations in discrete time. J. Differ. Equat. Appl. 17, 327–358 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Castro, C. Cuevas, C. Lizama, Well-posedness of second order evolution equation on discrete time. J. Differ. Equat. Appl. 16, 1165–1178 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Cuevas, J.C. de Souza, A pertubation theory for the discrete harmonic oscillator equation. J. Differ. Equat. Appl. 16(12), 1413–1428 (2010)

    Article  MATH  Google Scholar 

  10. C. Cuevas, C. Lizama, Maximal regularity of discrete second order Cauchy problems in Banach spaces. J. Differ. Equat. Appl. 13(12), 1129–1138. (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Cuevas, C. Lizama, Semilinear evolution equations of second order via maximal regularity. Adv. Difference Equat. 2008, 20 (2008), Article ID 316207

    Google Scholar 

  12. C. Cuevas, C. Vidal, A note on discrete maximal regularity for functional difference equations with infinite delay. Adv. Differ. Equat. 2006, 1–11 (2006)

    Article  MathSciNet  Google Scholar 

  13. G. Dore, Maximal regularity in L p spaces for an abstract Cauchy problem Adv. Differ. Equat. 5(1–3), 293–322 (2000)

    MATH  MathSciNet  Google Scholar 

  14. M. Geissert, Maximal L p regularity for parabolic difference equations. Math. Nach. 279(16), 1787–1796 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Guerre-Delabrière, L p -regularity of the Cauchy problem and the geometry of Banach spaces. Illinois J. Math. 39(4), 556–566 (1995)

    MATH  MathSciNet  Google Scholar 

  16. D. Guidetti, S. Piskarev, Stability of the Crank-Nicolson scheme and maximal regularity for parabolic equations in \(C^{\theta }(\overline{\Omega })\) spaces. Numer. Funct. Anal. Optim. 20(3–4), 251–277 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Hieber, S. Monniaux, Pseudo-differential operators and maximal regularity results for non-autonomous parabolic equations. Proc. Amer. Math. Soc. 128(4), 1047–1053 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. N. J. Kalton, P. Portal, Remarks on l 1 and l maximal regularity for power bounded operators. J. Aust. Math. Soc. 84(3), 345–365 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. N. J. Kalton, G. Lancien, A solution of the problem of L p maximal-regularity. Math. Z. 235, 559–568 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Portal, Discrete time analytic semigroups and the geometry of Banach spaces. Semigroup Forum 67, 125–144 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Portal, Analyse harmonique des fonctions à valeurs dans un espace de Banach pour l’ étude des equations d’évolutions. Ph.D. Thesis, Université de Franche-Comté, 2004

    Google Scholar 

  22. P. Portal, Maximal regularity of evolution equations on discrete time scales. J. Math. Anal. Appl. 304, 1–12 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Saal, Maximal regularity for the Stokes system on noncylindrical space-time domains. J. Math. Soc. Japan 58(3), 617–641 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agarwal, R.P., Cuevas, C., Lizama, C. (2014). First-Order Linear Difference Equations. In: Regularity of Difference Equations on Banach Spaces. Springer, Cham. https://doi.org/10.1007/978-3-319-06447-5_3

Download citation

Publish with us

Policies and ethics