Skip to main content

Results and Discussion

  • Chapter
  • First Online:
  • 758 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Acrylamide (AA) was chosen as the building block of the polymer used in the preparation of NPs. Polyacrylamide gels have been extensively characterized in the past years [4, 5, 16]. The crosslinking molecule, used to create the network, was N,N’-methylene-bisacrylamide (MBA). This monomer/crosslinker system is widely used for biomedical applications, because the mesh size of the polymeric network can be easily tuned; in addition, the photopolymerization is a fast and easy reaction, which only needs the addition of a very small amount of photoinitiator, DEAP in our case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  CAS  Google Scholar 

  2. Asnaghi D, Giglio M, Bossi A, Righetti PG (1997) Quasi-ordered structures in highly cross-linked poly(acrylamide) gels. Macromolecules 30:6194–6198

    Article  CAS  Google Scholar 

  3. Axelrod D, Koppel DE, Schlessinger J, Elson J, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  CAS  Google Scholar 

  4. Baselga J, Hernansez-Fuentes I, Pierola IF, Llorente MA (1987) Elastic properties of highly-crosslinked polyacrylamide gels. Macromolecules 20:3060–3065

    Article  CAS  Google Scholar 

  5. Baumann G, Chrambach A (1976) A highly crosslinked, transparent polyacrylamide gel with improved thermal stability for use in isoelectric focusing and isotachophoresis. Anal Biochem 70:32–38

    Google Scholar 

  6. Bolis D, Politou AS, Kelly G, Pastore A, Temussi PA (2004) Protein stability in nanocages: a novel approach for influencing protein stability by molecular confinement. J Mol Biol 336:203–212

    Article  CAS  Google Scholar 

  7. Boyde TRC (1976) Swelling and contraction of polyacrylamide gel slabs in aqueous solution. J Chromatogr 124:219–230

    Article  CAS  Google Scholar 

  8. Braeckmans K, Peeters L, Sanders NN, De Smedt SC, Demeester J (2003) Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys J 85:2240–2252

    Article  CAS  Google Scholar 

  9. Brannon-Peppas L, Peppas NA (1990) The equilibrium swelling behavior of porous and non-porous hydrogels. Absorbent polymer technology, Stud Polym Sci 8:67–102

    Article  CAS  Google Scholar 

  10. Eichenbaum GM, Kiser PF, Dobrynin AV, Simon AS, Needham D (1999) Investigation of the swelling response and loading of ionic microgels with drugs and proteins: the dependence on cross-link density. Macromolecules 32:4867–4878

    Article  CAS  Google Scholar 

  11. Folcarelli S, Battistoni A, Carrì MT, Polticelli F, falconi M, Nicolini L, Stella L, Rosato N, Rotilio G, Desideri A (1996) Effect of Lys-Arg mutation on the thermal stability of superoxide dismutase: influence on the monomer-dimer equilibrium. Prot Eng 9:323–325

    Google Scholar 

  12. Forman HJ, Fridovich I (1973) On the stability of superoxide dismutase. J Biol Chem 248:2645–2649

    CAS  Google Scholar 

  13. Ganji F, Vashegani-Farahani S, Vashegani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:375–398

    CAS  Google Scholar 

  14. Karadag E, Saraydin D, Cetinkaya S, Guven O (1996) In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide-based hydrogels. Biomaterials 17:67–70

    Article  CAS  Google Scholar 

  15. Lepock JR, Frey HE, Hallewell RA (1990) Contribution of conformational stability and reversibility of unfolding to the increased thermostability of human and bovine superoxide dismutase mutated at free cysteines. J Biol Chem 265:21612–21618

    CAS  Google Scholar 

  16. Lira LM, Martins KA, Cordoba de Torresi SI (2009) Structural parameters of polyacrylamide hydrogels obtained by the equilibrium swelling theory. Eur Polym J 45:1232–1238

    Google Scholar 

  17. Marklund SL (1984) Properties of extracellular superoxide dismutase from human lung. Biochem J 220:269–272

    Google Scholar 

  18. Nagash HJ, Okay O (1996) Formation and structure of polyacrylamide gels. J Appl Polym Sci 971–979

    Google Scholar 

  19. Pastor I, Pietro M, Mateo CR (2008) Effect of sol-gel confinement on the structural dynamics of the enzyme bovine Cu, Zn superoxide dismutase. J Phys Chem 112:15021–15028

    Article  CAS  Google Scholar 

  20. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    Article  CAS  Google Scholar 

  21. Russel SM, Carta G (2005) Mesh size of charged polyacrylamide hydrogels from partitioning measurements. Ind Eng Chem Res 44:8213–8217

    Google Scholar 

  22. Salin ML, Wilson WW (1981) Porcine superoxide dismutase. Isolation and characterization of a relatively basic cuprozinc enzyme. Mol Cell Biochem 36:157–161

    Article  CAS  Google Scholar 

  23. Saraydin D, Ünver-Saraydin S, Karadag E, Koptagel E, Güven O (2004) In vivo biocompatibility of radiation crosslinked acrylamide copolymers. Nucl Instr Meth B 217:281–292

    Article  CAS  Google Scholar 

  24. Song KB, Damodaran S (1991) Influence of electrostatic forces on the adsorption of succinylated beta-lactoglobulin at the air-water interface. Langmuir 7:2737–2742

    Article  CAS  Google Scholar 

  25. Soumpasis DM (1983) Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J 41:95–97

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Bobone .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bobone, S. (2014). Results and Discussion. In: Peptide and Protein Interaction with Membrane Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06434-5_7

Download citation

Publish with us

Policies and ethics